MINT
Collection
3 items
โข
Updated
This model is a fine-tuned version of Qwen/Qwen2-VL-7B-Instruct on the enrico, the fer2013, the resisc45, the decimer, the ucmerced and the inaturalist datasets. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.736 | 0.0454 | 500 | 0.6253 |
| 0.4861 | 0.0908 | 1000 | 0.3907 |
| 0.4181 | 0.1362 | 1500 | 0.3503 |
| 0.3028 | 0.1817 | 2000 | 0.3344 |
| 0.3214 | 0.2271 | 2500 | 0.3016 |
| 0.303 | 0.2725 | 3000 | 0.2977 |
| 0.3694 | 0.3179 | 3500 | 0.2994 |
| 0.3416 | 0.3633 | 4000 | 0.2988 |
| 0.266 | 0.4087 | 4500 | 0.2733 |
| 0.2433 | 0.4542 | 5000 | 0.2824 |
| 0.2216 | 0.4996 | 5500 | 0.2608 |
| 0.2781 | 0.5450 | 6000 | 0.2595 |
| 0.2206 | 0.5904 | 6500 | 0.2495 |
| 0.2403 | 0.6358 | 7000 | 0.2441 |
| 0.2681 | 0.6812 | 7500 | 0.2487 |
| 0.2041 | 0.7266 | 8000 | 0.2309 |
| 0.2982 | 0.7721 | 8500 | 0.2371 |
| 0.2233 | 0.8175 | 9000 | 0.2332 |
| 0.2416 | 0.8629 | 9500 | 0.2305 |
| 0.1913 | 0.9083 | 10000 | 0.2288 |
| 0.2006 | 0.9537 | 10500 | 0.2316 |
| 0.1846 | 0.9991 | 11000 | 0.2236 |
| 0.2535 | 1.0446 | 11500 | 0.2257 |
| 0.1195 | 1.0900 | 12000 | 0.2257 |
| 0.1386 | 1.1354 | 12500 | 0.2197 |
| 0.1542 | 1.1808 | 13000 | 0.2315 |
| 0.1951 | 1.2262 | 13500 | 0.2194 |
| 0.1833 | 1.2716 | 14000 | 0.2194 |
| 0.1244 | 1.3170 | 14500 | 0.2179 |
| 0.1624 | 1.3625 | 15000 | 0.2153 |
| 0.2119 | 1.4079 | 15500 | 0.2152 |
| 0.1696 | 1.4533 | 16000 | 0.2227 |
| 0.1398 | 1.4987 | 16500 | 0.2123 |
| 0.2048 | 1.5441 | 17000 | 0.2136 |
| 0.1115 | 1.5895 | 17500 | 0.2082 |
| 0.2041 | 1.6350 | 18000 | 0.2004 |
| 0.2027 | 1.6804 | 18500 | 0.1996 |
| 0.1198 | 1.7258 | 19000 | 0.2000 |
| 0.1837 | 1.7712 | 19500 | 0.2014 |
| 0.1748 | 1.8166 | 20000 | 0.1982 |
| 0.156 | 1.8620 | 20500 | 0.1981 |
| 0.1704 | 1.9074 | 21000 | 0.1924 |
| 0.1532 | 1.9529 | 21500 | 0.1963 |
| 0.1719 | 1.9983 | 22000 | 0.1920 |
| 0.0699 | 2.0437 | 22500 | 0.2018 |
| 0.145 | 2.0891 | 23000 | 0.2079 |
| 0.1097 | 2.1345 | 23500 | 0.2018 |
| 0.1007 | 2.1799 | 24000 | 0.2035 |
| 0.0622 | 2.2254 | 24500 | 0.2074 |
| 0.095 | 2.2708 | 25000 | 0.2000 |
| 0.144 | 2.3162 | 25500 | 0.2056 |
| 0.2398 | 2.3616 | 26000 | 0.2032 |
| 0.0303 | 2.4070 | 26500 | 0.2016 |
| 0.0766 | 2.4524 | 27000 | 0.2044 |
| 0.0822 | 2.4978 | 27500 | 0.2029 |
| 0.1465 | 2.5433 | 28000 | 0.2057 |
| 0.094 | 2.5887 | 28500 | 0.2006 |
| 0.1033 | 2.6341 | 29000 | 0.2012 |
| 0.128 | 2.6795 | 29500 | 0.2027 |
| 0.0784 | 2.7249 | 30000 | 0.2035 |
| 0.1244 | 2.7703 | 30500 | 0.2045 |
| 0.1106 | 2.8158 | 31000 | 0.2042 |
| 0.0845 | 2.8612 | 31500 | 0.2042 |
| 0.1129 | 2.9066 | 32000 | 0.2041 |
| 0.1064 | 2.9520 | 32500 | 0.2041 |
| 0.1087 | 2.9974 | 33000 | 0.2041 |