shanghai-binary

Binary classifier: Shanghai vs Not-Shanghai (audio FBANK β†’ GRU β†’ MLP).

Files

  • model.safetensors β€” PyTorch weights (safetensors)
  • config.json β€” model architecture
  • preprocessor_config.json β€” audio feature extraction settings
  • label_mapping.json β€” index β†’ label

Inference (PyTorch)

import torch, json, numpy as np, librosa
from safetensors.torch import load_file as load_safetensors

# Load config
import json, os
model_dir = "./hf/models/shanghai-binary"
cfg = json.load(open(os.path.join(model_dir, "config.json")))
pp  = json.load(open(os.path.join(model_dir, "preprocessor_config.json")))
lm  = json.load(open(os.path.join(model_dir, "label_mapping.json")))

# Define the model class you trained (LanNetBinary)
# (Same as in your training notebook)
class LanNetBinary(torch.nn.Module):
    def __init__(self, input_dim=40, hidden_dim=512, num_layers=2):
        super().__init__()
        self.gru = torch.nn.GRU(input_dim, hidden_dim, num_layers=num_layers, batch_first=True)
        self.linear2 = torch.nn.Linear(hidden_dim, 192)
        self.linear3 = torch.nn.Linear(192, 2)
    def forward(self, x):
        out, _ = self.gru(x)
        last = out[:, -1, :]
        x = self.linear2(last)
        x = self.linear3(x)
        return x

# Load weights
model = LanNetBinary(cfg["input_dim"], cfg["hidden_dim"], cfg["num_layers"])
sd = load_safetensors(os.path.join(model_dir, "model.safetensors"))
model.load_state_dict(sd, strict=True)
model.eval()

# Feature extraction should match preprocessor_config.json
def fbanks_from_array(y, sr=pp["sampling_rate"], n_mels=pp["n_mels"], n_fft=pp["n_fft"], hop_length=pp["hop_length"], max_len=pp["max_len_frames"]):
    mel = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length, power=2.0)
    fbanks = librosa.power_to_db(mel).T
    T = fbanks.shape[0]
    if T < max_len:
        import numpy as np
        fbanks = np.pad(fbanks, ((0, max_len - T), (0, 0)), mode="constant")
    else:
        fbanks = fbanks[:max_len, :]
    return torch.tensor(fbanks, dtype=torch.float32).unsqueeze(0)  # (1, T, F)

# Example: predict from a waveform array "y" at 16kHz
# y, _ = librosa.load("example.wav", sr=pp["sampling_rate"])
# x = fbanks_from_array(y)
# with torch.no_grad():
#     logits = model(x)
#     pred = int(torch.argmax(logits, dim=1))
#     print(lm[str(pred)])

References

Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Space using stingray-harpist/demo-model-test 1