Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
@@ -14,7 +247,7 @@ for file in files_to_check:
|
|
| 14 |
st.write(f"{file}: {'Found' if os.path.exists(file) else 'Missing'}")
|
| 15 |
|
| 16 |
try:
|
| 17 |
-
from inference import load_model_and_artifacts, predict
|
| 18 |
except Exception as e:
|
| 19 |
st.error(f"Error importing inference: {str(e)}")
|
| 20 |
st.stop()
|
|
@@ -113,11 +346,11 @@ if st.button("Generate Synthetic Data"):
|
|
| 113 |
st.session_state["synthetic_df"] = synthetic_df
|
| 114 |
|
| 115 |
st.subheader("Synthetic Data Preview")
|
| 116 |
-
st.dataframe(synthetic_df.head())
|
| 117 |
|
| 118 |
# Download synthetic data
|
| 119 |
csv_buffer = StringIO()
|
| 120 |
-
synthetic_df.to_csv(csv_buffer, index=False)
|
| 121 |
st.download_button(
|
| 122 |
label="Download Synthetic Data CSV",
|
| 123 |
data=csv_buffer.getvalue(),
|
|
@@ -173,16 +406,46 @@ if st.button("Generate Synthetic Data"):
|
|
| 173 |
except Exception as e:
|
| 174 |
st.error(f"Error generating forecast: {str(e)}")
|
| 175 |
|
| 176 |
-
# CSV
|
| 177 |
st.header("Upload Custom Data")
|
| 178 |
-
st.markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
| 180 |
|
| 181 |
if uploaded_file is not None:
|
| 182 |
try:
|
| 183 |
data = pd.read_csv(uploaded_file)
|
| 184 |
-
|
| 185 |
-
|
|
|
|
|
|
|
| 186 |
sequences_scaled = scaler.transform(sequences.reshape(-1, len(feature_names))).reshape(1, 21, len(feature_names))
|
| 187 |
predictions, uncertainties = predict(model, scaler, sequences_scaled)
|
| 188 |
|
|
@@ -191,8 +454,10 @@ if uploaded_file is not None:
|
|
| 191 |
raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
|
| 192 |
|
| 193 |
# Create forecast DataFrame
|
|
|
|
|
|
|
| 194 |
forecast_df = pd.DataFrame({
|
| 195 |
-
'
|
| 196 |
'Predicted Sales ($)': predictions[0],
|
| 197 |
'Uncertainty ($)': uncertainties[0]
|
| 198 |
})
|
|
@@ -201,14 +466,14 @@ if uploaded_file is not None:
|
|
| 201 |
st.dataframe(forecast_df)
|
| 202 |
|
| 203 |
# Plot forecast
|
| 204 |
-
fig = px.line(forecast_df, x='
|
| 205 |
fig.add_scatter(
|
| 206 |
-
x=forecast_df['
|
| 207 |
y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
|
| 208 |
mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
|
| 209 |
)
|
| 210 |
fig.add_scatter(
|
| 211 |
-
x=forecast_df['
|
| 212 |
y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
|
| 213 |
mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
|
| 214 |
fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
|
|
@@ -225,6 +490,6 @@ if uploaded_file is not None:
|
|
| 225 |
mime="text/csv"
|
| 226 |
)
|
| 227 |
else:
|
| 228 |
-
st.error(f"Invalid CSV. Expected 21 rows and columns
|
| 229 |
except Exception as e:
|
| 230 |
-
st.error(f"Error processing CSV or generating forecast: {str(e)}")
|
|
|
|
| 1 |
+
# import streamlit as st
|
| 2 |
+
# import pandas as pd
|
| 3 |
+
# import numpy as np
|
| 4 |
+
# import plotly.express as px
|
| 5 |
+
# from datetime import datetime, timedelta
|
| 6 |
+
# from io import StringIO
|
| 7 |
+
# import os
|
| 8 |
+
# import json
|
| 9 |
+
|
| 10 |
+
# # Debug: Verify file paths
|
| 11 |
+
# st.write("Debug: Checking file paths...")
|
| 12 |
+
# files_to_check = ["new_best_improved_model.pth", "scaler.pkl", "feature_names.json", "model_config.json"]
|
| 13 |
+
# for file in files_to_check:
|
| 14 |
+
# st.write(f"{file}: {'Found' if os.path.exists(file) else 'Missing'}")
|
| 15 |
+
|
| 16 |
+
# try:
|
| 17 |
+
# from inference import load_model_and_artifacts, predict
|
| 18 |
+
# except Exception as e:
|
| 19 |
+
# st.error(f"Error importing inference: {str(e)}")
|
| 20 |
+
# st.stop()
|
| 21 |
+
|
| 22 |
+
# st.title("Store Sales Time Series Forecasting")
|
| 23 |
+
# st.markdown("Forecast 13-week store sales using an LSTM model trained on Kaggle Store Sales data.")
|
| 24 |
+
|
| 25 |
+
# # Load model and artifacts
|
| 26 |
+
# try:
|
| 27 |
+
# st.write("Debug: Loading model and artifacts...")
|
| 28 |
+
# model, scaler, feature_names, config = load_model_and_artifacts()
|
| 29 |
+
# st.success("Model and artifacts loaded successfully")
|
| 30 |
+
# except Exception as e:
|
| 31 |
+
# st.error(f"Error loading model or artifacts: {str(e)}")
|
| 32 |
+
# st.stop()
|
| 33 |
+
|
| 34 |
+
# # Display model metrics
|
| 35 |
+
# st.header("Model Performance Metrics")
|
| 36 |
+
# metrics = {
|
| 37 |
+
# "MAE": 710.75,
|
| 38 |
+
# "RMSE": 1108.36,
|
| 39 |
+
# "MAPE": 7.16,
|
| 40 |
+
# "R2": 0.8633
|
| 41 |
+
# }
|
| 42 |
+
# st.markdown(f"""
|
| 43 |
+
# - **MAE**: ${metrics['MAE']:.2f}
|
| 44 |
+
# - **RMSE**: ${metrics['RMSE']:.2f}
|
| 45 |
+
# - **MAPE**: {metrics['MAPE']:.2f}%
|
| 46 |
+
# - **R² Score**: {metrics['R2']:.4f}
|
| 47 |
+
# """)
|
| 48 |
+
|
| 49 |
+
# # Model architecture summary
|
| 50 |
+
# st.header("Model Architecture")
|
| 51 |
+
# st.markdown(f"""
|
| 52 |
+
# - **Input Size**: {config['input_size']} features
|
| 53 |
+
# - **Hidden Size**: {config['hidden_size']}
|
| 54 |
+
# - **Number of Layers**: {config['num_layers']}
|
| 55 |
+
# - **Forecast Horizon**: {config['forecast_horizon']} weeks
|
| 56 |
+
# - **Dropout**: {config['dropout']}
|
| 57 |
+
# - **Attention**: {config['has_attention']}
|
| 58 |
+
# - **Input Projection**: {config['has_input_projection']}
|
| 59 |
+
# - **Parameters**: 227,441
|
| 60 |
+
# """)
|
| 61 |
+
|
| 62 |
+
# # Synthetic data generation
|
| 63 |
+
# st.header("Generate Synthetic Test Data")
|
| 64 |
+
# st.markdown("Create a sample dataset with 21 timesteps matching the training data distribution (sales ~$3,000–19,000).")
|
| 65 |
+
# if st.button("Generate Synthetic Data"):
|
| 66 |
+
# np.random.seed(42)
|
| 67 |
+
# sequence_length = 21
|
| 68 |
+
# n_features = len(feature_names)
|
| 69 |
+
# synthetic_data = np.zeros((sequence_length, n_features))
|
| 70 |
+
|
| 71 |
+
# # Generate features based on training data characteristics
|
| 72 |
+
# for i, feature in enumerate(feature_names):
|
| 73 |
+
# if feature == "sales":
|
| 74 |
+
# synthetic_data[:, i] = np.random.normal(8954.97, 3307.49, sequence_length) # Mean, std from verbose
|
| 75 |
+
# elif feature == "onpromotion":
|
| 76 |
+
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
|
| 77 |
+
# elif feature in ["dayofweek_sin", "dayofweek_cos"]:
|
| 78 |
+
# synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi, sequence_length))
|
| 79 |
+
# elif feature in ["month_sin", "month_cos"]:
|
| 80 |
+
# synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length))
|
| 81 |
+
# elif feature == "trend":
|
| 82 |
+
# synthetic_data[:, i] = np.linspace(0, sequence_length, sequence_length)
|
| 83 |
+
# elif feature == "is_weekend":
|
| 84 |
+
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.7, 0.3])
|
| 85 |
+
# elif feature == "quarter":
|
| 86 |
+
# synthetic_data[:, i] = np.random.choice([1, 2, 3, 4], sequence_length)
|
| 87 |
+
# elif "lag" in feature:
|
| 88 |
+
# lag = int(feature.split('_')[-1])
|
| 89 |
+
# synthetic_data[:, i] = np.roll(synthetic_data[:, 0], lag)
|
| 90 |
+
# if lag > 0:
|
| 91 |
+
# synthetic_data[:lag, i] = synthetic_data[:lag, 0]
|
| 92 |
+
# elif "ma" in feature:
|
| 93 |
+
# window = int(feature.split('_')[-1])
|
| 94 |
+
# synthetic_data[:, i] = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
|
| 95 |
+
# elif "ratio" in feature:
|
| 96 |
+
# window = int(feature.split('_')[-1])
|
| 97 |
+
# ma = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
|
| 98 |
+
# synthetic_data[:, i] = synthetic_data[:, 0] / (ma + 1e-8)
|
| 99 |
+
# elif "promo" in feature:
|
| 100 |
+
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
|
| 101 |
+
# elif feature == "dcoilwtico":
|
| 102 |
+
# synthetic_data[:, i] = np.random.normal(80, 10, sequence_length)
|
| 103 |
+
# elif feature == "is_holiday":
|
| 104 |
+
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.9, 0.1])
|
| 105 |
+
|
| 106 |
+
# # Create DataFrame with dates
|
| 107 |
+
# synthetic_df = pd.DataFrame(synthetic_data, columns=feature_names)
|
| 108 |
+
# end_date = datetime.now().date()
|
| 109 |
+
# dates = [end_date - timedelta(days=x) for x in range(sequence_length-1, -1, -1)]
|
| 110 |
+
# synthetic_df['Date'] = dates
|
| 111 |
+
|
| 112 |
+
# # Store in session state
|
| 113 |
+
# st.session_state["synthetic_df"] = synthetic_df
|
| 114 |
+
|
| 115 |
+
# st.subheader("Synthetic Data Preview")
|
| 116 |
+
# st.dataframe(synthetic_df.head())
|
| 117 |
+
|
| 118 |
+
# # Download synthetic data
|
| 119 |
+
# csv_buffer = StringIO()
|
| 120 |
+
# synthetic_df.to_csv(csv_buffer, index=False)
|
| 121 |
+
# st.download_button(
|
| 122 |
+
# label="Download Synthetic Data CSV",
|
| 123 |
+
# data=csv_buffer.getvalue(),
|
| 124 |
+
# file_name="synthetic_sales_data.csv",
|
| 125 |
+
# mime="text/csv"
|
| 126 |
+
# )
|
| 127 |
+
|
| 128 |
+
# # Generate forecast
|
| 129 |
+
# try:
|
| 130 |
+
# sequences = synthetic_df[feature_names].values.reshape(1, sequence_length, n_features)
|
| 131 |
+
# sequences_scaled = scaler.transform(sequences.reshape(-1, n_features)).reshape(1, sequence_length, n_features)
|
| 132 |
+
# predictions, uncertainties = predict(model, scaler, sequences_scaled)
|
| 133 |
+
|
| 134 |
+
# # Validate output shapes
|
| 135 |
+
# if predictions.shape != (1, 13) or uncertainties.shape != (1, 13):
|
| 136 |
+
# raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
|
| 137 |
+
|
| 138 |
+
# # Create forecast DataFrame
|
| 139 |
+
# forecast_dates = [end_date + timedelta(days=x*7) for x in range(1, 14)]
|
| 140 |
+
# forecast_df = pd.DataFrame({
|
| 141 |
+
# 'Date': forecast_dates,
|
| 142 |
+
# 'Predicted Sales ($)': predictions[0],
|
| 143 |
+
# 'Uncertainty ($)': uncertainties[0]
|
| 144 |
+
# })
|
| 145 |
+
|
| 146 |
+
# st.subheader("13-Week Forecast")
|
| 147 |
+
# st.dataframe(forecast_df)
|
| 148 |
+
|
| 149 |
+
# # Plot forecast
|
| 150 |
+
# fig = px.line(forecast_df, x='Date', y='Predicted Sales ($)', title='13-Week Sales Forecast')
|
| 151 |
+
# fig.add_scatter(
|
| 152 |
+
# x=forecast_df['Date'],
|
| 153 |
+
# y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
|
| 154 |
+
# mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
|
| 155 |
+
# )
|
| 156 |
+
# fig.add_scatter(
|
| 157 |
+
# x=forecast_df['Date'],
|
| 158 |
+
# y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
|
| 159 |
+
# mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
|
| 160 |
+
# fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
|
| 161 |
+
# )
|
| 162 |
+
# st.plotly_chart(fig)
|
| 163 |
+
|
| 164 |
+
# # Download forecast
|
| 165 |
+
# csv_buffer = StringIO()
|
| 166 |
+
# forecast_df.to_csv(csv_buffer, index=False)
|
| 167 |
+
# st.download_button(
|
| 168 |
+
# label="Download Forecast CSV",
|
| 169 |
+
# data=csv_buffer.getvalue(),
|
| 170 |
+
# file_name="forecast_results.csv",
|
| 171 |
+
# mime="text/csv"
|
| 172 |
+
# )
|
| 173 |
+
# except Exception as e:
|
| 174 |
+
# st.error(f"Error generating forecast: {str(e)}")
|
| 175 |
+
|
| 176 |
+
# # CSV upload for custom predictions
|
| 177 |
+
# st.header("Upload Custom Data")
|
| 178 |
+
# st.markdown("Upload a CSV with 21 timesteps and 20 features matching the feature names and format of the synthetic data.")
|
| 179 |
+
# uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
| 180 |
+
|
| 181 |
+
# if uploaded_file is not None:
|
| 182 |
+
# try:
|
| 183 |
+
# data = pd.read_csv(uploaded_file)
|
| 184 |
+
# if set(feature_names).issubset(data.columns) and len(data) == 21:
|
| 185 |
+
# sequences = data[feature_names].values.reshape(1, 21, len(feature_names))
|
| 186 |
+
# sequences_scaled = scaler.transform(sequences.reshape(-1, len(feature_names))).reshape(1, 21, len(feature_names))
|
| 187 |
+
# predictions, uncertainties = predict(model, scaler, sequences_scaled)
|
| 188 |
+
|
| 189 |
+
# # Validate output shapes
|
| 190 |
+
# if predictions.shape != (1, 13) or uncertainties.shape != (1, 13):
|
| 191 |
+
# raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
|
| 192 |
+
|
| 193 |
+
# # Create forecast DataFrame
|
| 194 |
+
# forecast_df = pd.DataFrame({
|
| 195 |
+
# 'Week': range(1, 14),
|
| 196 |
+
# 'Predicted Sales ($)': predictions[0],
|
| 197 |
+
# 'Uncertainty ($)': uncertainties[0]
|
| 198 |
+
# })
|
| 199 |
+
|
| 200 |
+
# st.subheader("13-Week Forecast")
|
| 201 |
+
# st.dataframe(forecast_df)
|
| 202 |
+
|
| 203 |
+
# # Plot forecast
|
| 204 |
+
# fig = px.line(forecast_df, x='Week', y='Predicted Sales ($)', title='13-Week Sales Forecast')
|
| 205 |
+
# fig.add_scatter(
|
| 206 |
+
# x=forecast_df['Week'],
|
| 207 |
+
# y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
|
| 208 |
+
# mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
|
| 209 |
+
# )
|
| 210 |
+
# fig.add_scatter(
|
| 211 |
+
# x=forecast_df['Week'],
|
| 212 |
+
# y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
|
| 213 |
+
# mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
|
| 214 |
+
# fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
|
| 215 |
+
# )
|
| 216 |
+
# st.plotly_chart(fig)
|
| 217 |
+
|
| 218 |
+
# # Download forecast
|
| 219 |
+
# csv_buffer = StringIO()
|
| 220 |
+
# forecast_df.to_csv(csv_buffer, index=False)
|
| 221 |
+
# st.download_button(
|
| 222 |
+
# label="Download Forecast CSV",
|
| 223 |
+
# data=csv_buffer.getvalue(),
|
| 224 |
+
# file_name="custom_forecast_results.csv",
|
| 225 |
+
# mime="text/csv"
|
| 226 |
+
# )
|
| 227 |
+
# else:
|
| 228 |
+
# st.error(f"Invalid CSV. Expected 21 rows and columns including: {', '.join(feature_names)}")
|
| 229 |
+
# except Exception as e:
|
| 230 |
+
# st.error(f"Error processing CSV or generating forecast: {str(e)}")
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
import streamlit as st
|
| 235 |
import pandas as pd
|
| 236 |
import numpy as np
|
|
|
|
| 247 |
st.write(f"{file}: {'Found' if os.path.exists(file) else 'Missing'}")
|
| 248 |
|
| 249 |
try:
|
| 250 |
+
from inference import load_model_and_artifacts, predict, derive_features
|
| 251 |
except Exception as e:
|
| 252 |
st.error(f"Error importing inference: {str(e)}")
|
| 253 |
st.stop()
|
|
|
|
| 346 |
st.session_state["synthetic_df"] = synthetic_df
|
| 347 |
|
| 348 |
st.subheader("Synthetic Data Preview")
|
| 349 |
+
st.dataframe(synthetic_df[["Date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]].head())
|
| 350 |
|
| 351 |
# Download synthetic data
|
| 352 |
csv_buffer = StringIO()
|
| 353 |
+
synthetic_df[["date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]].rename(columns={"Date": "date"}).to_csv(csv_buffer, index=False)
|
| 354 |
st.download_button(
|
| 355 |
label="Download Synthetic Data CSV",
|
| 356 |
data=csv_buffer.getvalue(),
|
|
|
|
| 406 |
except Exception as e:
|
| 407 |
st.error(f"Error generating forecast: {str(e)}")
|
| 408 |
|
| 409 |
+
# Sample CSV for user guidance
|
| 410 |
st.header("Upload Custom Data")
|
| 411 |
+
st.markdown("""
|
| 412 |
+
Upload a CSV with 21 timesteps containing the following columns:
|
| 413 |
+
- **date**: Date in YYYY-MM-DD format (e.g., 2025-06-22)
|
| 414 |
+
- **sales**: Weekly sales in USD (e.g., 3000 to 19372)
|
| 415 |
+
- **onpromotion**: 0 or 1 indicating if items are on promotion
|
| 416 |
+
- **dcoilwtico**: Oil price (e.g., 70 to 90)
|
| 417 |
+
- **is_holiday**: 0 or 1 indicating if the day is a holiday
|
| 418 |
+
|
| 419 |
+
The remaining features will be derived automatically. Download a sample CSV below to see the expected format.
|
| 420 |
+
""")
|
| 421 |
+
|
| 422 |
+
# Generate sample CSV
|
| 423 |
+
sample_data = pd.DataFrame({
|
| 424 |
+
"date": ["2025-06-22", "2025-06-15", "2025-06-08"],
|
| 425 |
+
"sales": [8954.97, 9500.00, 8000.00],
|
| 426 |
+
"onpromotion": [0, 1, 0],
|
| 427 |
+
"dcoilwtico": [80.0, 82.5, 78.0],
|
| 428 |
+
"is_holiday": [0, 0, 1]
|
| 429 |
+
})
|
| 430 |
+
csv_buffer = StringIO()
|
| 431 |
+
sample_data.to_csv(csv_buffer, index=False)
|
| 432 |
+
st.download_button(
|
| 433 |
+
label="Download Sample CSV",
|
| 434 |
+
data=csv_buffer.getvalue(),
|
| 435 |
+
file_name="sample_input.csv",
|
| 436 |
+
mime="text/csv"
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
# CSV upload for custom predictions
|
| 440 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
| 441 |
|
| 442 |
if uploaded_file is not None:
|
| 443 |
try:
|
| 444 |
data = pd.read_csv(uploaded_file)
|
| 445 |
+
required_columns = ["date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]
|
| 446 |
+
if set(required_columns).issubset(data.columns) and len(data) == 21:
|
| 447 |
+
# Derive full feature set
|
| 448 |
+
sequences = derive_features(data, feature_names, sequence_length=21)
|
| 449 |
sequences_scaled = scaler.transform(sequences.reshape(-1, len(feature_names))).reshape(1, 21, len(feature_names))
|
| 450 |
predictions, uncertainties = predict(model, scaler, sequences_scaled)
|
| 451 |
|
|
|
|
| 454 |
raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
|
| 455 |
|
| 456 |
# Create forecast DataFrame
|
| 457 |
+
end_date = pd.to_datetime(data["date"].iloc[0]).date()
|
| 458 |
+
forecast_dates = [end_date + timedelta(days=x*7) for x in range(1, 14)]
|
| 459 |
forecast_df = pd.DataFrame({
|
| 460 |
+
'Date': forecast_dates,
|
| 461 |
'Predicted Sales ($)': predictions[0],
|
| 462 |
'Uncertainty ($)': uncertainties[0]
|
| 463 |
})
|
|
|
|
| 466 |
st.dataframe(forecast_df)
|
| 467 |
|
| 468 |
# Plot forecast
|
| 469 |
+
fig = px.line(forecast_df, x='Date', y='Predicted Sales ($)', title='13-Week Sales Forecast')
|
| 470 |
fig.add_scatter(
|
| 471 |
+
x=forecast_df['Date'],
|
| 472 |
y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
|
| 473 |
mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
|
| 474 |
)
|
| 475 |
fig.add_scatter(
|
| 476 |
+
x=forecast_df['Date'],
|
| 477 |
y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
|
| 478 |
mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
|
| 479 |
fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
|
|
|
|
| 490 |
mime="text/csv"
|
| 491 |
)
|
| 492 |
else:
|
| 493 |
+
st.error(f"Invalid CSV. Expected 21 rows and columns: {', '.join(required_columns)}")
|
| 494 |
except Exception as e:
|
| 495 |
+
st.error(f"Error processing CSV or generating forecast: {str(e)}")
|