Update inference.py
Browse files- inference.py +144 -1
inference.py
CHANGED
|
@@ -1,9 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import pickle
|
| 5 |
import json
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
class ImprovedCashFlowLSTM(nn.Module):
|
| 9 |
def __init__(self, input_size, hidden_size=128, num_layers=2, forecast_horizon=13, dropout=0.2):
|
|
@@ -63,6 +164,48 @@ def load_model_and_artifacts(
|
|
| 63 |
model.eval()
|
| 64 |
return model, scaler, feature_names, config
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def predict(model, scaler, sequences):
|
| 67 |
"""Generate 13-week sales forecasts from input sequences."""
|
| 68 |
device = torch.device("cpu")
|
|
@@ -93,4 +236,4 @@ def predict(model, scaler, sequences):
|
|
| 93 |
uncertainties = np.repeat(uncertainties, rescaled.shape[1], axis=1) # Shape: (batch_size, 13)
|
| 94 |
uncertainties = np.clip(uncertainties, 100, 1000) # Wider bounds to avoid constant clipping
|
| 95 |
|
| 96 |
-
return rescaled, uncertainties
|
|
|
|
| 1 |
+
# import torch
|
| 2 |
+
# import torch.nn as nn
|
| 3 |
+
# import numpy as np
|
| 4 |
+
# import pickle
|
| 5 |
+
# import json
|
| 6 |
+
# import os
|
| 7 |
+
|
| 8 |
+
# class ImprovedCashFlowLSTM(nn.Module):
|
| 9 |
+
# def __init__(self, input_size, hidden_size=128, num_layers=2, forecast_horizon=13, dropout=0.2):
|
| 10 |
+
# super(ImprovedCashFlowLSTM, self).__init__()
|
| 11 |
+
# self.hidden_size = hidden_size
|
| 12 |
+
# self.num_layers = num_layers
|
| 13 |
+
# self.forecast_horizon = forecast_horizon
|
| 14 |
+
# self.lstm = nn.LSTM(
|
| 15 |
+
# input_size,
|
| 16 |
+
# hidden_size,
|
| 17 |
+
# num_layers,
|
| 18 |
+
# dropout=dropout if num_layers > 1 else 0,
|
| 19 |
+
# batch_first=True
|
| 20 |
+
# )
|
| 21 |
+
# self.output_layers = nn.Sequential(
|
| 22 |
+
# nn.Linear(hidden_size, hidden_size),
|
| 23 |
+
# nn.ReLU(),
|
| 24 |
+
# nn.Dropout(dropout),
|
| 25 |
+
# nn.Linear(hidden_size, forecast_horizon)
|
| 26 |
+
# )
|
| 27 |
+
|
| 28 |
+
# def forward(self, x):
|
| 29 |
+
# lstm_out, (hidden, cell) = self.lstm(x)
|
| 30 |
+
# last_hidden = lstm_out[:, -1, :]
|
| 31 |
+
# forecast = self.output_layers(last_hidden)
|
| 32 |
+
# return forecast
|
| 33 |
+
|
| 34 |
+
# def load_model_and_artifacts(
|
| 35 |
+
# model_path="new_best_improved_model.pth",
|
| 36 |
+
# scaler_path="scaler.pkl",
|
| 37 |
+
# feature_names_path="feature_names.json",
|
| 38 |
+
# config_path="model_config.json"
|
| 39 |
+
# ):
|
| 40 |
+
# """Load model, scaler, feature names, and configuration."""
|
| 41 |
+
# if not all(os.path.exists(path) for path in [model_path, scaler_path, feature_names_path, config_path]):
|
| 42 |
+
# missing = [path for path in [model_path, scaler_path, feature_names_path, config_path] if not os.path.exists(path)]
|
| 43 |
+
# raise FileNotFoundError(f"Missing files: {missing}")
|
| 44 |
+
|
| 45 |
+
# with open(config_path, "r") as f:
|
| 46 |
+
# config = json.load(f)
|
| 47 |
+
|
| 48 |
+
# with open(scaler_path, "rb") as f:
|
| 49 |
+
# scaler = pickle.load(f)
|
| 50 |
+
|
| 51 |
+
# with open(feature_names_path, "r") as f:
|
| 52 |
+
# feature_names = json.load(f)
|
| 53 |
+
|
| 54 |
+
# input_size = config["input_size"]
|
| 55 |
+
# model = ImprovedCashFlowLSTM(
|
| 56 |
+
# input_size=input_size,
|
| 57 |
+
# hidden_size=config["hidden_size"],
|
| 58 |
+
# num_layers=config["num_layers"],
|
| 59 |
+
# forecast_horizon=config["forecast_horizon"],
|
| 60 |
+
# dropout=config["dropout"]
|
| 61 |
+
# )
|
| 62 |
+
# model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
| 63 |
+
# model.eval()
|
| 64 |
+
# return model, scaler, feature_names, config
|
| 65 |
+
|
| 66 |
+
# def predict(model, scaler, sequences):
|
| 67 |
+
# """Generate 13-week sales forecasts from input sequences."""
|
| 68 |
+
# device = torch.device("cpu")
|
| 69 |
+
# model.to(device)
|
| 70 |
+
|
| 71 |
+
# # Validate input shape: (batch_size, sequence_length=21, n_features=20)
|
| 72 |
+
# if len(sequences.shape) != 3 or sequences.shape[1] != 21 or sequences.shape[2] != model.lstm.input_size:
|
| 73 |
+
# raise ValueError(f"Expected input shape (batch_size, 21, {model.lstm.input_size}), got {sequences.shape}")
|
| 74 |
+
|
| 75 |
+
# # Convert to tensor
|
| 76 |
+
# sequences = torch.tensor(sequences, dtype=torch.float32).to(device)
|
| 77 |
+
|
| 78 |
+
# # Generate predictions
|
| 79 |
+
# with torch.no_grad():
|
| 80 |
+
# predictions = model(sequences).cpu().numpy() # Shape: (batch_size, 13)
|
| 81 |
+
|
| 82 |
+
# # Inverse transform predictions (sales is first feature)
|
| 83 |
+
# dummy = np.zeros((predictions.shape[0] * predictions.shape[1], scaler.n_features_in_))
|
| 84 |
+
# dummy[:, 0] = predictions.flatten()
|
| 85 |
+
# rescaled = scaler.inverse_transform(dummy)[:, 0].reshape(predictions.shape)
|
| 86 |
+
|
| 87 |
+
# # Ensure non-negative predictions and clip to training range
|
| 88 |
+
# rescaled = np.maximum(rescaled, 0)
|
| 89 |
+
# rescaled = np.clip(rescaled, 3000, 19372) # Training sales range: $3069–19372
|
| 90 |
+
|
| 91 |
+
# # Estimate uncertainty: scaled std of predictions per sequence, repeated for each timestep
|
| 92 |
+
# uncertainties = 0.2 * np.std(rescaled, axis=1, keepdims=True) + 100 # Shape: (batch_size, 1)
|
| 93 |
+
# uncertainties = np.repeat(uncertainties, rescaled.shape[1], axis=1) # Shape: (batch_size, 13)
|
| 94 |
+
# uncertainties = np.clip(uncertainties, 100, 1000) # Wider bounds to avoid constant clipping
|
| 95 |
+
|
| 96 |
+
# return rescaled, uncertainties
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
import torch
|
| 101 |
import torch.nn as nn
|
| 102 |
import numpy as np
|
| 103 |
+
import pandas as pd
|
| 104 |
import pickle
|
| 105 |
import json
|
| 106 |
import os
|
| 107 |
+
from datetime import datetime
|
| 108 |
|
| 109 |
class ImprovedCashFlowLSTM(nn.Module):
|
| 110 |
def __init__(self, input_size, hidden_size=128, num_layers=2, forecast_horizon=13, dropout=0.2):
|
|
|
|
| 164 |
model.eval()
|
| 165 |
return model, scaler, feature_names, config
|
| 166 |
|
| 167 |
+
def derive_features(df, feature_names, sequence_length=21):
|
| 168 |
+
"""Derive 20 features from minimal input columns: date, sales, onpromotion, dcoilwtico, is_holiday."""
|
| 169 |
+
required_columns = ["date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]
|
| 170 |
+
if not all(col in df.columns for col in required_columns):
|
| 171 |
+
raise ValueError(f"CSV must contain columns: {', '.join(required_columns)}")
|
| 172 |
+
if len(df) != sequence_length:
|
| 173 |
+
raise ValueError(f"CSV must have exactly {sequence_length} rows, got {len(df)}")
|
| 174 |
+
|
| 175 |
+
# Convert date to datetime
|
| 176 |
+
df["date"] = pd.to_datetime(df["date"])
|
| 177 |
+
|
| 178 |
+
# Initialize output DataFrame with all required features
|
| 179 |
+
feature_df = pd.DataFrame(0.0, index=df.index, columns=feature_names)
|
| 180 |
+
|
| 181 |
+
# Copy direct input features
|
| 182 |
+
for col in ["sales", "onpromotion", "dcoilwtico", "is_holiday"]:
|
| 183 |
+
feature_df[col] = df[col]
|
| 184 |
+
|
| 185 |
+
# Derive temporal features
|
| 186 |
+
feature_df["trend"] = np.linspace(0, sequence_length - 1, sequence_length)
|
| 187 |
+
feature_df["dayofweek_sin"] = np.sin(2 * np.pi * df["date"].dt.dayofweek / 7)
|
| 188 |
+
feature_df["dayofweek_cos"] = np.cos(2 * np.pi * df["date"].dt.dayofweek / 7)
|
| 189 |
+
feature_df["month_sin"] = np.sin(2 * np.pi * df["date"].dt.month / 12)
|
| 190 |
+
feature_df["month_cos"] = np.cos(2 * np.pi * df["date"].dt.month / 12)
|
| 191 |
+
feature_df["quarter"] = df["date"].dt.quarter
|
| 192 |
+
feature_df["is_weekend"] = (df["date"].dt.dayofweek >= 5).astype(float)
|
| 193 |
+
|
| 194 |
+
# Derive lag features
|
| 195 |
+
for lag in [1, 2, 3]:
|
| 196 |
+
feature_df[f"lag_{lag}"] = df["sales"].shift(lag).fillna(df["sales"].iloc[0])
|
| 197 |
+
|
| 198 |
+
# Derive moving average and ratio features
|
| 199 |
+
for window in [7, 14]:
|
| 200 |
+
feature_df[f"ma_{window}"] = df["sales"].rolling(window=window, min_periods=1).mean()
|
| 201 |
+
feature_df[f"ratio_{window}"] = df["sales"] / (feature_df[f"ma_{window}"] + 1e-8)
|
| 202 |
+
|
| 203 |
+
# Derive promotion lag features
|
| 204 |
+
for lag in [1, 2]:
|
| 205 |
+
feature_df[f"promo_lag_{lag}"] = df["onpromotion"].shift(lag).fillna(df["onpromotion"].iloc[0])
|
| 206 |
+
|
| 207 |
+
return feature_df[feature_names].values
|
| 208 |
+
|
| 209 |
def predict(model, scaler, sequences):
|
| 210 |
"""Generate 13-week sales forecasts from input sequences."""
|
| 211 |
device = torch.device("cpu")
|
|
|
|
| 236 |
uncertainties = np.repeat(uncertainties, rescaled.shape[1], axis=1) # Shape: (batch_size, 13)
|
| 237 |
uncertainties = np.clip(uncertainties, 100, 1000) # Wider bounds to avoid constant clipping
|
| 238 |
|
| 239 |
+
return rescaled, uncertainties
|