File size: 27,169 Bytes
ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 ada9349 1bc47a4 d49ff4a 1bc47a4 d49ff4a 8dda8f7 1bc47a4 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a ada9349 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 1681fa8 8dda8f7 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 1bc47a4 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 1681fa8 8dda8f7 1681fa8 8dda8f7 d49ff4a 1681fa8 8dda8f7 1681fa8 d49ff4a 1681fa8 d49ff4a 8dda8f7 d49ff4a 1681fa8 8dda8f7 d49ff4a 8dda8f7 1bc47a4 8dda8f7 ada9349 8dda8f7 625b1e6 d49ff4a 625b1e6 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 71abd05 8dda8f7 d49ff4a 8dda8f7 d49ff4a 8dda8f7 d49ff4a 1bc47a4 8dda8f7 1bc47a4 8dda8f7 1bc47a4 d49ff4a 71abd05 d49ff4a ada9349 8dda8f7 ada9349 d49ff4a ada9349 1bc47a4 ada9349 8dda8f7 71abd05 8dda8f7 ada9349 8dda8f7 ada9349 d49ff4a 8dda8f7 1bc47a4 ada9349 8dda8f7 1bc47a4 ada9349 8dda8f7 1bc47a4 d49ff4a 71abd05 d49ff4a ada9349 d49ff4a ada9349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
# import streamlit as st
# import pandas as pd
# import numpy as np
# import plotly.express as px
# from datetime import datetime, timedelta
# from io import StringIO
# import os
# import json
# # Debug: Verify file paths
# st.write("Debug: Checking file paths...")
# files_to_check = ["new_best_improved_model.pth", "scaler.pkl", "feature_names.json", "model_config.json"]
# for file in files_to_check:
# st.write(f"{file}: {'Found' if os.path.exists(file) else 'Missing'}")
# try:
# from inference import load_model_and_artifacts, predict, derive_features
# except Exception as e:
# st.error(f"Error importing inference: {str(e)}")
# st.stop()
# st.title("Store Sales Time Series Forecasting")
# st.markdown("Forecast 13-week store sales using an LSTM model trained on Kaggle Store Sales data.")
# # Load model and artifacts
# try:
# st.write("Debug: Loading model and artifacts...")
# model, scaler, feature_names, config = load_model_and_artifacts()
# st.success("Model and artifacts loaded successfully")
# except Exception as e:
# st.error(f"Error loading model or artifacts: {str(e)}")
# st.stop()
# # Display model metrics
# st.header("Model Performance Metrics")
# metrics = {
# "MAE": 710.75,
# "RMSE": 1108.36,
# "MAPE": 7.16,
# "R2": 0.8633
# }
# st.markdown(f"""
# - **MAE**: ${metrics['MAE']:.2f}
# - **RMSE**: ${metrics['RMSE']:.2f}
# - **MAPE**: {metrics['MAPE']:.2f}%
# - **R² Score**: {metrics['R2']:.4f}
# """)
# # Model architecture summary
# st.header("Model Architecture")
# st.markdown(f"""
# - **Input Size**: {config['input_size']} features
# - **Hidden Size**: {config['hidden_size']}
# - **Number of Layers**: {config['num_layers']}
# - **Forecast Horizon**: {config['forecast_horizon']} weeks
# - **Dropout**: {config['dropout']}
# - **Attention**: {config['has_attention']}
# - **Input Projection**: {config['has_input_projection']}
# - **Parameters**: 227,441
# """)
# # Synthetic data generation
# st.header("Generate Synthetic Test Data")
# st.markdown("Create a sample dataset with 21 timesteps matching the training data distribution (sales ~$3,000–19,000).")
# if st.button("Generate Synthetic Data"):
# np.random.seed(42)
# sequence_length = 21
# n_features = len(feature_names)
# synthetic_data = np.zeros((sequence_length, n_features))
# # Generate features based on training data characteristics
# for i, feature in enumerate(feature_names):
# if feature == "sales":
# synthetic_data[:, i] = np.random.normal(8954.97, 3307.49, sequence_length) # Mean, std from verbose
# elif feature == "onpromotion":
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
# elif feature in ["dayofweek_sin", "dayofweek_cos"]:
# synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi, sequence_length))
# elif feature in ["month_sin", "month_cos"]:
# synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length))
# elif feature == "trend":
# synthetic_data[:, i] = np.linspace(0, sequence_length, sequence_length)
# elif feature == "is_weekend":
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.7, 0.3])
# elif feature == "quarter":
# synthetic_data[:, i] = np.random.choice([1, 2, 3, 4], sequence_length)
# elif "lag" in feature:
# lag = int(feature.split('_')[-1])
# synthetic_data[:, i] = np.roll(synthetic_data[:, 0], lag)
# if lag > 0:
# synthetic_data[:lag, i] = synthetic_data[:lag, 0]
# elif "ma" in feature:
# window = int(feature.split('_')[-1])
# synthetic_data[:, i] = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
# elif "ratio" in feature:
# window = int(feature.split('_')[-1])
# ma = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
# synthetic_data[:, i] = synthetic_data[:, 0] / (ma + 1e-8)
# elif "promo" in feature:
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
# elif feature == "dcoilwtico":
# synthetic_data[:, i] = np.random.normal(80, 10, sequence_length)
# elif feature == "is_holiday":
# synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.9, 0.1])
# # Create DataFrame with dates
# synthetic_df = pd.DataFrame(synthetic_data, columns=feature_names)
# end_date = datetime.now().date()
# dates = [end_date - timedelta(days=x) for x in range(sequence_length-1, -1, -1)]
# synthetic_df['Date'] = dates
# # Store in session state
# st.session_state["synthetic_df"] = synthetic_df
# st.subheader("Synthetic Data Preview")
# st.dataframe(synthetic_df[["Date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]].head())
# # Download synthetic data with lowercase 'date' column
# csv_buffer = StringIO()
# synthetic_df[["Date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]].rename(columns={"Date": "date"}).to_csv(csv_buffer, index=False)
# st.download_button(
# label="Download Synthetic Data CSV",
# data=csv_buffer.getvalue(),
# file_name="synthetic_sales_data.csv",
# mime="text/csv"
# )
# # Generate forecast
# try:
# sequences = synthetic_df[feature_names].values.reshape(1, sequence_length, n_features)
# sequences_scaled = scaler.transform(sequences.reshape(-1, n_features)).reshape(1, sequence_length, n_features)
# predictions, uncertainties = predict(model, scaler, sequences_scaled)
# # Validate output shapes
# if predictions.shape != (1, 13) or uncertainties.shape != (1, 13):
# raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
# # Create forecast DataFrame
# forecast_dates = [end_date + timedelta(days=x*7) for x in range(1, 14)]
# forecast_df = pd.DataFrame({
# 'Date': forecast_dates,
# 'Predicted Sales ($)': predictions[0],
# 'Uncertainty ($)': uncertainties[0]
# })
# st.subheader("13-Week Forecast")
# st.dataframe(forecast_df)
# # Plot forecast
# fig = px.line(forecast_df, x='Date', y='Predicted Sales ($)', title='13-Week Sales Forecast')
# fig.add_scatter(
# x=forecast_df['Date'],
# y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
# mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
# )
# fig.add_scatter(
# x=forecast_df['Date'],
# y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
# mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
# fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
# )
# st.plotly_chart(fig)
# # Download forecast
# csv_buffer = StringIO()
# forecast_df.to_csv(csv_buffer, index=False)
# st.download_button(
# label="Download Forecast CSV",
# data=csv_buffer.getvalue(),
# file_name="forecast_results.csv",
# mime="text/csv"
# )
# except Exception as e:
# st.error(f"Error generating forecast: {str(e)}")
# # Sample CSV for user guidance
# st.header("Upload Custom Data")
# st.markdown("""
# Upload a CSV with 21 timesteps containing the following columns:
# - **date**: Date in YYYY-MM-DD format (e.g., 2025-06-22)
# - **sales**: Weekly sales in USD (e.g., 3000 to 19372)
# - **onpromotion**: 0 or 1 indicating if items are on promotion
# - **dcoilwtico**: Oil price (e.g., 70 to 90)
# - **is_holiday**: 0 or 1 indicating if the day is a holiday
# The remaining features will be derived automatically. Download a sample CSV below to see the expected format.
# """)
# # Generate sample CSV
# sample_data = pd.DataFrame({
# "date": ["2025-06-22", "2025-06-15", "2025-06-08"],
# "sales": [8954.97, 9500.00, 8000.00],
# "onpromotion": [0, 1, 0],
# "dcoilwtico": [80.0, 82.5, 78.0],
# "is_holiday": [0, 0, 1]
# })
# csv_buffer = StringIO()
# sample_data.to_csv(csv_buffer, index=False)
# st.download_button(
# label="Download Sample CSV",
# data=csv_buffer.getvalue(),
# file_name="sample_input.csv",
# mime="text/csv"
# )
# # CSV upload for custom predictions
# uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# if uploaded_file is not None:
# try:
# data = pd.read_csv(uploaded_file)
# required_columns = ["date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]
# if set(required_columns).issubset(data.columns) and len(data) == 21:
# # Derive full feature set
# sequences = derive_features(data, feature_names, sequence_length=21)
# sequences_scaled = scaler.transform(sequences.reshape(-1, len(feature_names))).reshape(1, 21, len(feature_names))
# predictions, uncertainties = predict(model, scaler, sequences_scaled)
# # Validate output shapes
# if predictions.shape != (1, 13) or uncertainties.shape != (1, 13):
# raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
# # Create forecast DataFrame
# end_date = pd.to_datetime(data["date"].iloc[0]).date()
# forecast_dates = [end_date + timedelta(days=x*7) for x in range(1, 14)]
# forecast_df = pd.DataFrame({
# 'Date': forecast_dates,
# 'Predicted Sales ($)': predictions[0],
# 'Uncertainty ($)': uncertainties[0]
# })
# st.subheader("13-Week Forecast")
# st.dataframe(forecast_df)
# # Plot forecast
# fig = px.line(forecast_df, x='Date', y='Predicted Sales ($)', title='13-Week Sales Forecast')
# fig.add_scatter(
# x=forecast_df['Date'],
# y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
# mode='lines', name='Upper Bound', line=dict(dash='dash', color='green')
# )
# fig.add_scatter(
# x=forecast_df['Date'],
# y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
# mode='lines', name='Lower Bound', line=dict(dash='dash', color='green'),
# fill='tonexty', fillcolor='rgba(0, 255, 0, 0.1)'
# )
# st.plotly_chart(fig)
# # Download forecast
# csv_buffer = StringIO()
# forecast_df.to_csv(csv_buffer, index=False)
# st.download_button(
# label="Download Forecast CSV",
# data=csv_buffer.getvalue(),
# file_name="custom_forecast_results.csv",
# mime="text/csv"
# )
# else:
# st.error(f"Invalid CSV. Expected 21 rows and columns: {', '.join(required_columns)}")
# except Exception as e:
# st.error(f"Error processing CSV or generating forecast: {str(e)}")
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
from io import StringIO
import os
import json
from scipy.stats import linregress
# Debug: Verify file paths
st.write("Debug: Checking file paths...")
files_to_check = ["new_best_improved_model.pth", "scaler.pkl", "feature_names.json", "model_config.json"]
for file in files_to_check:
st.write(f"{file}: {'Found' if os.path.exists(file) else 'Missing'}")
try:
from inference import load_model_and_artifacts, predict, derive_features
except Exception as e:
st.error(f"Error importing inference: {str(e)}")
st.stop()
st.title("Store Sales Time Series Forecasting")
st.markdown("Forecast 13-week store sales using an LSTM model trained on Kaggle Store Sales data.")
# Load model and artifacts
try:
st.write("Debug: Loading model and artifacts...")
model, scaler, feature_names, config = load_model_and_artifacts()
st.success("Model and artifacts loaded successfully")
except Exception as e:
st.error(f"Error loading model or artifacts: {str(e)}")
st.stop()
# Display model metrics
st.header("Model Performance Metrics")
metrics = {
"MAE": 710.75,
"RMSE": 1108.36,
"MAPE": 7.16,
"R2": 0.8633
}
st.markdown(f"""
- **MAE**: ${metrics['MAE']:.2f}
- **RMSE**: ${metrics['RMSE']:.2f}
- **MAPE**: {metrics['MAPE']:.2f}%
- **R² Score**: {metrics['R2']:.4f}
""")
# Model architecture summary
st.header("Model Architecture")
st.markdown(f"""
- **Input Size**: {config['input_size']} features
- **Hidden Size**: {config['hidden_size']}
- **Number of Layers**: {config['num_layers']}
- **Forecast Horizon**: {config['forecast_horizon']} weeks
- **Dropout**: {config['dropout']}
- **Attention**: {config['has_attention']}
- **Input Projection**: {config['has_input_projection']}
- **Parameters**: 227,441
""")
# Function to compute statistical metrics and create infographics
def analyze_input_data(df, date_col, sales_col):
"""Compute statistical metrics and generate infographics for input sales data."""
# Ensure date is datetime
df[date_col] = pd.to_datetime(df[date_col])
# Compute metrics
sales = df[sales_col]
metrics = {
"Mean Sales ($)": sales.mean(),
"Std Sales ($)": sales.std(),
"Min Sales ($)": sales.min(),
"Max Sales ($)": sales.max(),
"Median Sales ($)": sales.median(),
"Trend Slope": linregress(range(len(sales)), sales).slope
}
# Create metrics DataFrame
metrics_df = pd.DataFrame.from_dict(metrics, orient="index", columns=["Value"])
metrics_df["Value"] = metrics_df["Value"].round(2)
# Create infographics
# 1. Sales over time
fig1 = px.line(df, x=date_col, y=sales_col, title="Historical Sales Over Time")
fig1.update_traces(line=dict(color="blue"))
# 2. 7-day moving average
df["MA_7"] = df[sales_col].rolling(window=7, min_periods=1).mean()
fig2 = px.line(df, x=date_col, y=["sales", "MA_7"], title="Sales with 7-Day Moving Average")
fig2.update_traces(line=dict(color="blue"), selector=dict(name="sales"))
fig2.update_traces(line=dict(color="orange", dash="dash"), selector=dict(name="MA_7"))
# 3. Sales distribution
fig3 = px.histogram(df, x=sales_col, nbins=20, title="Sales Distribution")
fig3.update_traces(marker=dict(color="blue"))
return metrics_df, [fig1, fig2, fig3]
# Synthetic data generation
st.header("Generate Synthetic Test Data")
st.markdown("Create a sample dataset with 21 timesteps matching the training data distribution (sales ~$3,000–19,000).")
if st.button("Generate Synthetic Data"):
np.random.seed(42)
sequence_length = 21
n_features = len(feature_names)
synthetic_data = np.zeros((sequence_length, n_features))
# Generate features based on training data characteristics
for i, feature in enumerate(feature_names):
if feature == "sales":
synthetic_data[:, i] = np.random.normal(8954.97, 3307.49, sequence_length) # Mean, std from verbose
elif feature == "onpromotion":
synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
elif feature in ["dayofweek_sin", "dayofweek_cos"]:
synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi, sequence_length))
elif feature in ["month_sin", "month_cos"]:
synthetic_data[:, i] = np.sin(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length)) if "sin" in feature else np.cos(np.linspace(0, 2 * np.pi * 12 / sequence_length, sequence_length))
elif feature == "trend":
synthetic_data[:, i] = np.linspace(0, sequence_length, sequence_length)
elif feature == "is_weekend":
synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.7, 0.3])
elif feature == "quarter":
synthetic_data[:, i] = np.random.choice([1, 2, 3, 4], sequence_length)
elif "lag" in feature:
lag = int(feature.split('_')[-1])
synthetic_data[:, i] = np.roll(synthetic_data[:, 0], lag)
if lag > 0:
synthetic_data[:lag, i] = synthetic_data[:lag, 0]
elif "ma" in feature:
window = int(feature.split('_')[-1])
synthetic_data[:, i] = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
elif "ratio" in feature:
window = int(feature.split('_')[-1])
ma = pd.Series(synthetic_data[:, 0]).rolling(window=window, min_periods=1).mean().values
synthetic_data[:, i] = synthetic_data[:, 0] / (ma + 1e-8)
elif "promo" in feature:
synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.8, 0.2])
elif feature == "dcoilwtico":
synthetic_data[:, i] = np.random.normal(80, 10, sequence_length)
elif feature == "is_holiday":
synthetic_data[:, i] = np.random.choice([0, 1], sequence_length, p=[0.9, 0.1])
# Create DataFrame with dates
synthetic_df = pd.DataFrame(synthetic_data, columns=feature_names)
end_date = datetime.now().date()
dates = [end_date - timedelta(days=x) for x in range(sequence_length-1, -1, -1)]
synthetic_df['Date'] = dates
# Store in session state
st.session_state["synthetic_df"] = synthetic_df
# Input data analysis
st.subheader("Input Data Analysis")
metrics_df, infographics = analyze_input_data(synthetic_df, "Date", "sales")
st.write("**Statistical Metrics**")
st.dataframe(metrics_df)
st.write("**Infographics**")
for fig in infographics:
st.plotly_chart(fig)
st.subheader("Synthetic Data Preview")
st.dataframe(synthetic_df[["Date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]].head())
# Download synthetic data with lowercase 'date' column
csv_buffer = StringIO()
synthetic_df[["Date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]].rename(columns={"Date": "date"}).to_csv(csv_buffer, index=False)
st.download_button(
label="Download Synthetic Data CSV",
data=csv_buffer.getvalue(),
file_name="synthetic_sales_data.csv",
mime="text/csv"
)
# Generate forecast
try:
sequences = synthetic_df[feature_names].values.reshape(1, sequence_length, n_features)
sequences_scaled = scaler.transform(sequences.reshape(-1, n_features)).reshape(1, sequence_length, n_features)
predictions, uncertainties = predict(model, scaler, sequences_scaled)
# Validate output shapes
if predictions.shape != (1, 13) or uncertainties.shape != (1, 13):
raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
# Create forecast DataFrame
forecast_dates = [end_date + timedelta(days=x*7) for x in range(1, 14)]
forecast_df = pd.DataFrame({
'Date': forecast_dates,
'Predicted Sales ($)': predictions[0],
'Uncertainty ($)': uncertainties[0]
})
st.subheader("13-Week Forecast")
st.dataframe(forecast_df)
# Combined plot: historical and forecast
fig = go.Figure()
# Historical sales
fig.add_trace(go.Scatter(
x=synthetic_df["Date"],
y=synthetic_df["sales"],
mode='lines+markers',
name='Historical Sales',
line=dict(color='blue')
))
# Forecasted sales
fig.add_trace(go.Scatter(
x=forecast_df['Date'],
y=forecast_df['Predicted Sales ($)'],
mode='lines+markers',
name='Predicted Sales',
line=dict(color='red', dash='dash')
))
# Uncertainty bands
fig.add_trace(go.Scatter(
x=forecast_df['Date'],
y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
mode='lines',
name='Upper Bound',
line=dict(color='green', dash='dash'),
showlegend=True
))
fig.add_trace(go.Scatter(
x=forecast_df['Date'],
y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
mode='lines',
name='Lower Bound',
line=dict(color='green', dash='dash'),
fill='tonexty',
fillcolor='rgba(0, 255, 0, 0.1)'
))
fig.update_layout(
title="Historical and 13-Week Forecasted Sales",
xaxis_title="Date",
yaxis_title="Sales ($)",
template="plotly_white"
)
st.plotly_chart(fig)
# Download forecast
csv_buffer = StringIO()
forecast_df.to_csv(csv_buffer, index=False)
st.download_button(
label="Download Forecast CSV",
data=csv_buffer.getvalue(),
file_name="forecast_results.csv",
mime="text/csv"
)
except Exception as e:
st.error(f"Error generating forecast: {str(e)}")
# Sample CSV for user guidance
st.header("Upload Custom Data")
st.markdown("""
Upload a CSV with 21 timesteps containing the following columns:
- **date**: Date in YYYY-MM-DD format (e.g., 2025-06-22)
- **sales**: Weekly sales in USD (e.g., 3000 to 19372)
- **onpromotion**: 0 or 1 indicating if items are on promotion
- **dcoilwtico**: Oil price (e.g., 70 to 90)
- **is_holiday**: 0 or 1 indicating if the day is a holiday
The remaining features will be derived automatically. Download a sample CSV below to see the expected format.
""")
# Generate sample CSV
sample_data = pd.DataFrame({
"date": ["2025-06-22", "2025-06-15", "2025-06-08"],
"sales": [8954.97, 9500.00, 8000.00],
"onpromotion": [0, 1, 0],
"dcoilwtico": [80.0, 82.5, 78.0],
"is_holiday": [0, 0, 1]
})
csv_buffer = StringIO()
sample_data.to_csv(csv_buffer, index=False)
st.download_button(
label="Download Sample CSV",
data=csv_buffer.getvalue(),
file_name="sample_input.csv",
mime="text/csv"
)
# CSV upload for custom predictions
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
try:
data = pd.read_csv(uploaded_file)
required_columns = ["date", "sales", "onpromotion", "dcoilwtico", "is_holiday"]
if set(required_columns).issubset(data.columns) and len(data) == 21:
# Input data analysis
st.subheader("Input Data Analysis")
metrics_df, infographics = analyze_input_data(data, "date", "sales")
st.write("**Statistical Metrics**")
st.dataframe(metrics_df)
st.write("**Infographics**")
for fig in infographics:
st.plotly_chart(fig)
# Derive full feature set
sequences = derive_features(data, feature_names, sequence_length=21)
sequences_scaled = scaler.transform(sequences.reshape(-1, len(feature_names))).reshape(1, 21, len(feature_names))
predictions, uncertainties = predict(model, scaler, sequences_scaled)
# Validate output shapes
if predictions.shape != (1, 13) or uncertainties.shape != (1, 13):
raise ValueError(f"Expected predictions and uncertainties of shape (1, 13), got {predictions.shape} and {uncertainties.shape}")
# Create forecast DataFrame
end_date = pd.to_datetime(data["date"].iloc[0]).date()
forecast_dates = [end_date + timedelta(days=x*7) for x in range(1, 14)]
forecast_df = pd.DataFrame({
'Date': forecast_dates,
'Predicted Sales ($)': predictions[0],
'Uncertainty ($)': uncertainties[0]
})
st.subheader("13-Week Forecast")
st.dataframe(forecast_df)
# Combined plot: historical and forecast
fig = go.Figure()
# Historical sales
fig.add_trace(go.Scatter(
x=data["date"],
y=data["sales"],
mode='lines+markers',
name='Historical Sales',
line=dict(color='blue')
))
# Forecasted sales
fig.add_trace(go.Scatter(
x=forecast_df['Date'],
y=forecast_df['Predicted Sales ($)'],
mode='lines+markers',
name='Predicted Sales',
line=dict(color='red', dash='dash')
))
# Uncertainty bands
fig.add_trace(go.Scatter(
x=forecast_df['Date'],
y=forecast_df['Predicted Sales ($)'] + forecast_df['Uncertainty ($)'],
mode='lines',
name='Upper Bound',
line=dict(color='green', dash='dash'),
showlegend=True
))
fig.add_trace(go.Scatter(
x=forecast_df['Date'],
y=forecast_df['Predicted Sales ($)'] - forecast_df['Uncertainty ($)'],
mode='lines',
name='Lower Bound',
line=dict(color='green', dash='dash'),
fill='tonexty',
fillcolor='rgba(0, 255, 0, 0.1)'
))
fig.update_layout(
title="Historical and 13-Week Forecasted Sales",
xaxis_title="Date",
yaxis_title="Sales ($)",
template="plotly_white"
)
st.plotly_chart(fig)
# Download forecast
csv_buffer = StringIO()
forecast_df.to_csv(csv_buffer, index=False)
st.download_button(
label="Download Forecast CSV",
data=csv_buffer.getvalue(),
file_name="custom_forecast_results.csv",
mime="text/csv"
)
else:
st.error(f"Invalid CSV. Expected 21 rows and columns: {', '.join(required_columns)}")
except Exception as e:
st.error(f"Error processing CSV or generating forecast: {str(e)}") |