Spaces:
Paused
Paused
File size: 22,620 Bytes
d3eafc5 7bb3c7f d3eafc5 ddb6de7 a9ca915 d3eafc5 a9ca915 111fb2f 93bfba2 ddb6de7 a9ca915 49dfb30 ff657e5 a9ca915 d3eafc5 228d2fb d3eafc5 ddb6de7 a9ca915 ff657e5 384f7cc ff657e5 384f7cc ff657e5 ff684f3 ddb6de7 925e298 4cf56ac 779923e 93bfba2 9d03fc2 ddb6de7 7fe5200 d3eafc5 370a6e5 7fe5200 370a6e5 d3eafc5 7fe5200 370a6e5 34e6705 a9ca915 7fe5200 faccd40 370a6e5 421ee76 c2fea05 a9ca915 d3eafc5 0d68287 4cf56ac d3eafc5 370a6e5 a9ca915 925e298 3b480cb 4f439d4 bb1d03c 58557e6 bb1d03c 48b7631 ddb6de7 80ec795 d3eafc5 a9ca915 ddb6de7 906aefc ddb6de7 7fe5200 d3eafc5 a9ca915 d3eafc5 7fe5200 d97e7e6 ddb6de7 c76ca5f ddb6de7 7fe5200 ddb6de7 6e951bd 9b2099a b29e61b 9b2099a 7fe5200 9b2099a ddb6de7 370a6e5 ddb6de7 370a6e5 ddb6de7 7fe5200 ddb6de7 7fe5200 ddb6de7 7fe5200 ddb6de7 7fe5200 ddb6de7 2cf0ae8 8e48cbc afb5890 c456413 d30efaa 370a6e5 ddb6de7 5338d3c b29e61b 370a6e5 ddb6de7 370a6e5 7fe5200 ddb6de7 7fe5200 d3b3856 ddb6de7 8dbf7c8 ddb6de7 ffa9b99 7fe5200 b29e61b d3b3856 ddb6de7 779923e 193bb36 ddb6de7 8c0c519 ddb6de7 2187554 ddb6de7 24c8c0c 324564e d30efaa 807227c ddb6de7 d30efaa acd1c1d ddb6de7 a9ca915 ddb6de7 5bef9f1 1b4088e 7bd67df e03c1d9 7bd67df 5fce134 7bd67df d3eafc5 7bd67df 2cf0ae8 845fa46 d3eafc5 a9ca915 d3eafc5 ddb6de7 d3eafc5 ddb6de7 d3eafc5 ddb6de7 d3eafc5 ddb6de7 d3eafc5 a9ca915 111fb2f 18e0122 d3eafc5 ddb6de7 d3eafc5 ddb6de7 e804d9f 845fa46 d3eafc5 ddb6de7 a9ca915 ddb6de7 a9ca915 111fb2f a9ca915 845fa46 a9ca915 2cf0ae8 a9ca915 ddb6de7 a9ca915 ddb6de7 a9ca915 111fb2f a9ca915 845fa46 a9ca915 2cf0ae8 a9ca915 ddb6de7 d3eafc5 ddb6de7 d3eafc5 111fb2f d3eafc5 845fa46 d3eafc5 2cf0ae8 d3eafc5 ddb6de7 111fb2f ddb6de7 845fa46 ddb6de7 2cf0ae8 ddb6de7 111fb2f ddb6de7 845fa46 ddb6de7 2cf0ae8 ddb6de7 111fb2f ddb6de7 845fa46 ddb6de7 2cf0ae8 ddb6de7 111fb2f ddb6de7 845fa46 ddb6de7 2cf0ae8 ddb6de7 111fb2f ddb6de7 845fa46 ddb6de7 2cf0ae8 ddb6de7 c2fea05 d3eafc5 5f3c82e d3eafc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
#!/usr/bin/env python
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
import spaces
import os
import random
import uuid
import gradio as gr
import numpy as np
from PIL import Image
import torch
from diffusers import AutoencoderKL, StableDiffusionXLPipeline
from diffusers import EulerAncestralDiscreteScheduler
from typing import Tuple
import paramiko
import datetime
# import cyper
from image_gen_aux import UpscaleWithModel
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
# torch.backends.cuda.preferred_blas_library="cublas"
# torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
DESCRIPTIONXX = """
## ⚡⚡⚡⚡ REALVISXL V5.0 BF16 (Tester L) ⚡⚡⚡⚡
"""
examples = [
"Many apples splashed with drops of water within a fancy bowl 4k, hdr --v 6.0 --style raw",
"A profile photo of a dog, brown background, shot on Leica M6 --ar 128:85 --v 6.0 --style raw",
]
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
HF_TOKEN = os.getenv("HF_TOKEN")
FTP_HOST = os.getenv("FTP_HOST")
FTP_USER = os.getenv("FTP_USER")
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = os.getenv("FTP_DIR")
# os.putenv('TORCH_LINALG_PREFER_CUSOLVER','1')
os.putenv('HF_HUB_ENABLE_HF_TRANSFER','1')
MAX_SEED = np.iinfo(np.int32).max
neg_prompt_2 = " 'non-photorealistic':1.5, 'unrealistic skin','unattractive face':1.3, 'low quality':1.1, ('dull color scheme', 'dull colors', 'digital noise':1.2),'amateurish', 'poorly drawn face':1.3, 'poorly drawn', 'distorted face', 'low resolution', 'simplistic' "
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
upscaler = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cpu"))
def load_and_prepare_model():
vaeXL = AutoencoderKL.from_pretrained("stabilityai/sdxl-vae", safety_checker=None, use_safetensors=False) #.to(device=device, dtype=torch.bfloat16)
#sched = EulerAncestralDiscreteScheduler.from_pretrained('ford442/RealVisXL_V5.0_BF16', subfolder='scheduler')
pipe = StableDiffusionXLPipeline.from_pretrained(
#'ford442/RealVisXL_V5.0_BF16',
#'ford442/RealVisXL_V5.0_FP64',
'SG161222/RealVisXL_V5.0',
trust_remote_code=True,
add_watermarker=False,
vae=vaeXL,
low_cpu_mem_usage = False,
token=HF_TOKEN,
)
#pipe.vae = vaeXL #.to(torch.bfloat16)
#pipe.scheduler = sched
#pipe.vae.do_resize=False
#pipe.vae.vae_scale_factor=8
#pipe.to(device=device, dtype=torch.bfloat16)
pipe.to(device)
#pipe.to(torch.bfloat16)
#pipe.vae.set_default_attn_processor()
print(f'init noise scale: {pipe.scheduler.init_noise_sigma}')
pipe.watermark=None
pipe.safety_checker=None
return pipe
pipe = load_and_prepare_model()
l_dtype=torch.float32
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
filename= f'rv_C_{timestamp}.txt'
with open(filename, "w") as f:
f.write(f"Realvis 5.0 (Tester L) \n")
f.write(f"Date/time: {timestamp} \n")
f.write(f"Prompt: {prompt} \n")
f.write(f"Steps: {num_inference_steps} \n")
f.write(f"Guidance Scale: {guidance_scale} \n")
upload_to_ftp(filename)
@spaces.GPU(duration=60)
def generate(
segment: int = 1,
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
style_selection: str = "",
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3.8,
num_inference_steps: int = 200,
seed: int = 424242,
use_resolution_binning: bool = True,
progress=gr.Progress(track_tqdm=True) # Add progress as a keyword argument
):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if segment==1:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds = pipe.encode_prompt(
prompt=prompt, negative_prompt=negative_prompt, device=device, num_images_per_prompt=1,
do_classifier_free_guidance=True, prompt_embeds=None, negative_prompt_embeds=None,
pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, lora_scale=None, clip_skip=None,
)
pipe.scheduler.set_timesteps(num_inference_steps, device=torch.device('cuda'))
timesteps = pipe.scheduler.timesteps
all_timesteps_cpu = timesteps.cpu()
# test with 2 segments
timesteps_split_np = np.array_split(all_timesteps_cpu.numpy(), 8)
segment_timesteps = torch.from_numpy(timesteps_split_np[0]).to("cuda")
# test with 1 segment
#segment_timesteps = timesteps
num_channels_latents = pipe.unet.config.in_channels
latents = pipe.prepare_latents(
batch_size=1, num_channels_latents=pipe.unet.config.in_channels, height=height, width=width,
dtype=l_dtype, device=device, generator=generator, latents=None,
)
text_encoder_projection_dim = pipe.text_encoder_2.config.projection_dim
original_size = (width, height)
target_size = (width, height)
crops_coords_top_left = (0, 0)
add_time_ids = pipe._get_add_time_ids(
original_size, crops_coords_top_left, target_size, dtype=l_dtype, # Use bfloat16
text_encoder_projection_dim=text_encoder_projection_dim
).to("cuda")
unet_prompt_embeds = prompt_embeds
unet_added_text_embeds = pooled_prompt_embeds
loop_add_time_ids = add_time_ids
unet_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
unet_added_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
loop_add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
added_cond_kwargs = {"text_embeds": unet_added_text_embeds, "time_ids": loop_add_time_ids}
current_latents = latents
else:
state_file = f"rv_L_{segment-1}_{seed}.pt"
state = torch.load(state_file, weights_only=False)
# # TEST
#seed = state["seed"]
generator = torch.Generator(device='cuda') #.manual_seed(seed)
generator_state = state["generator_state"]
generator.set_state(generator_state)
latents = state["intermediate_latents"].to("cuda",dtype=l_dtype) #, dtype=torch.bfloat16)
guidance_scale = state["guidance_scale"]
all_timesteps_cpu = state["all_timesteps"]
height = state["height"]
width = state["width"]
pipe.scheduler.set_timesteps(len(all_timesteps_cpu), device=device)
timesteps_split_np = np.array_split(all_timesteps_cpu.numpy(), 8)
segment_timesteps = torch.from_numpy(timesteps_split_np[segment - 1]).to("cuda")
prompt_embeds = state["prompt_embeds"].to("cuda", dtype=l_dtype)
negative_prompt_embeds = state["negative_prompt_embeds"].to("cuda", dtype=l_dtype)
pooled_prompt_embeds = state["pooled_prompt_embeds"].to("cuda", dtype=l_dtype)
negative_pooled_prompt_embeds = state["negative_pooled_prompt_embeds"].to("cuda", dtype=l_dtype)
unet_prompt_embeds = prompt_embeds
unet_added_text_embeds = pooled_prompt_embeds
unet_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
unet_added_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
add_time_ids = state["add_time_ids"].to("cuda", dtype=l_dtype)
loop_add_time_ids = add_time_ids
loop_add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
added_cond_kwargs = {"text_embeds": unet_added_text_embeds, "time_ids": loop_add_time_ids}
current_latents = latents
for i, t in enumerate(pipe.progress_bar(segment_timesteps)):
latent_model_input = torch.cat([current_latents] * 2)
latent_model_input = pipe.scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = pipe.unet(latent_model_input, t, encoder_hidden_states=unet_prompt_embeds,added_cond_kwargs=added_cond_kwargs, return_dict=False)[0]
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
current_latents = pipe.scheduler.step(noise_pred, t, current_latents, return_dict=False)[0]
intermediate_latents_cpu = current_latents.detach().cpu()
if segment==8:
final_latents = current_latents
final_latents = final_latents / pipe.vae.config.scaling_factor
#with torch.no_grad():
image = pipe.vae.decode(final_latents, return_dict=False)[0]
image = pipe.image_processor.postprocess(image.detach(), output_type="pil")[0]
output_image_file = f"rv_L_{seed}.png"
upscaler.to(torch.device('cuda'))
with torch.no_grad():
upscale2 = upscaler(image, tiling=True, tile_width=256, tile_height=256)
#timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"rv_L_{seed}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
upload_to_ftp(upscale_path)
#timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
#upload_to_ftp(filename)
#uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
unique_name = str(uuid.uuid4()) + ".png"
os.symlink(output_image_file, unique_name)
return [unique_name], seed
else:
original_prompt_embeds_cpu = prompt_embeds.cpu()
original_negative_prompt_embeds_cpu = negative_prompt_embeds.cpu()
original_pooled_prompt_embeds_cpu = pooled_prompt_embeds.cpu()
original_negative_pooled_prompt_embeds_cpu = negative_pooled_prompt_embeds.cpu()
original_add_time_ids_cpu = add_time_ids.cpu()
original_generator_state_cpu = generator.get_state().cpu()
timesteps = pipe.scheduler.timesteps
all_timesteps_cpu = timesteps.cpu() # Move to CPU
state = {
"intermediate_latents": intermediate_latents_cpu,
"generator_state": original_generator_state_cpu,
"all_timesteps": all_timesteps_cpu, # Save full list generated by scheduler
"prompt_embeds": original_prompt_embeds_cpu, # Save ORIGINAL embeds
"negative_prompt_embeds": original_negative_prompt_embeds_cpu,
"pooled_prompt_embeds": original_pooled_prompt_embeds_cpu,
"negative_pooled_prompt_embeds": original_negative_pooled_prompt_embeds_cpu,
"add_time_ids": original_add_time_ids_cpu, # Save ORIGINAL time IDs
"guidance_scale": guidance_scale,
"seed": seed,
"prompt": prompt, # Save originals for reference/verification
"negative_prompt": negative_prompt,
"height": height, # Save dimensions used
"width": width
}
state_file = f"rv_L_{segment}_{seed}.pt"
torch.save(state, state_file)
return None, seed
def update_ranges(total_steps):
"""Calculates and updates the ranges for the 8 slave sliders."""
step_size = total_steps // 8 # Calculate the size of each segment
ranges = []
for i in range(8):
lower_bound = i * step_size
ranges.append([lower_bound]) # Add the range to the list
return ranges
with gr.Blocks(theme=gr.themes.Origin()) as demo:
gr.Markdown(DESCRIPTIONXX)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button_1 = gr.Button("Run Segment 1", scale=0)
run_button_2 = gr.Button("Run Segment 2", scale=0)
run_button_3 = gr.Button("Run Segment 3", scale=0)
run_button_4 = gr.Button("Run Segment 4", scale=0)
run_button_5 = gr.Button("Run Segment 5", scale=0)
run_button_6 = gr.Button("Run Segment 6", scale=0)
run_button_7 = gr.Button("Run Segment 7", scale=0)
run_button_8 = gr.Button("Run Segment 8", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
seed = gr.Number(value=1, label="Seed")
with gr.Row():
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row():
with gr.Column(scale=1):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=5,
lines=4,
placeholder="Enter a negative prompt",
value="('deformed', 'distorted', 'disfigured':1.3),'not photorealistic':1.5, 'poorly drawn', 'bad anatomy', 'wrong anatomy', 'extra limb', 'missing limb', 'floating limbs', 'poorly drawn hands', 'poorly drawn feet', 'poorly drawn face':1.3, 'out of frame', 'extra limbs', 'bad anatomy', 'bad art', 'beginner', 'distorted face','amateur'",
visible=True,
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=448,
maximum=4096,
step=64,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=448,
maximum=4096,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=30,
step=0.05,
value=3.8,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=2000,
step=10,
value=200,
)
range_sliders = []
for i in range(8):
slider = gr.Slider(
minimum=1,
maximum=250,
value=[i * (num_inference_steps.value // 8)],
step=1,
label=f"Range {i + 1}",
)
range_sliders.append(slider)
num_inference_steps.change(
update_ranges,
inputs=num_inference_steps,
outputs=range_sliders,
)
gr.Examples(
examples=examples,
inputs=prompt,
cache_examples=False
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
run_button_1.click,
],
fn=generate,
inputs=[
gr.Number(value=1),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_2.click,
],
fn=generate,
inputs=[
gr.Number(value=2),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_3.click,
],
fn=generate,
inputs=[
gr.Number(value=3),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_4.click,
],
fn=generate,
inputs=[
gr.Number(value=4),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_5.click,
],
fn=generate,
inputs=[
gr.Number(value=5),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_6.click,
],
fn=generate,
inputs=[
gr.Number(value=6),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_7.click,
],
fn=generate,
inputs=[
gr.Number(value=7),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.on(
triggers=[
run_button_8.click,
],
fn=generate,
inputs=[
gr.Number(value=8),
prompt,
negative_prompt,
use_negative_prompt,
style_selection,
width,
height,
guidance_scale,
num_inference_steps,
seed,
],
outputs=[result, seed],
)
gr.Markdown("### REALVISXL V5.0 Default Mode")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡Models used in the playground <a href="https://huggingface.co/SG161222/RealVisXL_V5.0">[REALVISXL V5.0]</a>, <a href="https://huggingface.co/SG161222/RealVisXL_V5.0_Lightning">[REALVISXL V5.0 LIGHTNING]</a> for image generation. Stable Diffusion XL piped (SDXL) model HF. This is the demo space for generating images using the Stable Diffusion XL models, with multiple different variants available.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚡This is the demo space for generating images using Stable Diffusion XL with quality styles, different models, and types. Try the sample prompts to generate higher quality images. Try the sample prompts for generating higher quality images.
<a href='https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection' target='_blank'>Try prompts</a>.
</div>
""")
gr.Markdown(
"""
<div style="text-align: justify;">
⚠️ Users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.
</div>
""")
def text_generation(input_text, seed):
full_prompt = "Text Generator Application by ecarbo"
return full_prompt
title = "Text Generator Demo GPT-Neo"
description = "Text Generator Application by ecarbo"
if __name__ == "__main__":
demo_interface = demo.queue(max_size=50) # Remove .launch() here
text_gen_interface = gr.Interface(
fn=text_generation,
inputs=[
gr.Textbox(lines=1, label="Expand the following prompt to be more detailed and descriptive for image generation: "),
gr.Number(value=10, label="Enter seed number")
],
outputs=gr.Textbox(label="Text Generated"),
title=title,
description=description,
)
combined_interface = gr.TabbedInterface([demo_interface, text_gen_interface], ["Image Generation", "Text Generation"])
combined_interface.launch(show_api=False) |