ford442 commited on
Commit
58557e6
·
verified ·
1 Parent(s): a449616

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -170,7 +170,7 @@ def upload_to_ftp(filename):
170
  def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
171
  filename= f'rv_C_{timestamp}.txt'
172
  with open(filename, "w") as f:
173
- f.write(f"Realvis 5.0 (Tester D) \n")
174
  f.write(f"Date/time: {timestamp} \n")
175
  f.write(f"Prompt: {prompt} \n")
176
  f.write(f"Steps: {num_inference_steps} \n")
@@ -284,9 +284,8 @@ def generate_30(
284
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
285
  filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
286
  #upload_to_ftp(filename)
287
- pyx.upload_to_ftp(filename)
288
  #uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
289
-
290
  if denoising_start==0.0:
291
  options = {
292
  "prompt": [prompt],
@@ -355,6 +354,7 @@ def generate_30(
355
  torch.save(rv_image, sd_latent_path)
356
 
357
  if denoising_end==1.0 and denoising_start!=0.0:
 
358
  latent_file = f'rv_L_{denoising_start}.l'
359
  loaded_latent = torch.load(latent_file)
360
  print("Shape of loaded latent:", loaded_latent.shape)
@@ -423,7 +423,6 @@ def generate_30(
423
  options["use_resolution_binning"] = True
424
  batch_options = options.copy()
425
  rv_image = pipe(**batch_options).images[0]
426
- sd_image_path = f"rv_L_{timestamp}.png"
427
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
428
  pyx.upload_to_ftp(sd_image_path)
429
  torch.set_float32_matmul_precision("medium")
@@ -433,7 +432,6 @@ def generate_30(
433
  downscale_path = f"rv_L_upscale_{timestamp}.png"
434
  downscale1.save(downscale_path,optimize=False,compress_level=0)
435
  pyx.upload_to_ftp(downscale_path)
436
-
437
  unique_name = str(uuid.uuid4()) + ".png"
438
  os.symlink(sd_image_path, unique_name)
439
  return [unique_name]
 
170
  def uploadNote(prompt,num_inference_steps,guidance_scale,timestamp):
171
  filename= f'rv_C_{timestamp}.txt'
172
  with open(filename, "w") as f:
173
+ f.write(f"Realvis 5.0 (Tester L) \n")
174
  f.write(f"Date/time: {timestamp} \n")
175
  f.write(f"Prompt: {prompt} \n")
176
  f.write(f"Steps: {num_inference_steps} \n")
 
284
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
285
  filename = pyx.uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
286
  #upload_to_ftp(filename)
 
287
  #uploadNote(prompt,num_inference_steps,guidance_scale,timestamp)
288
+ sd_image_path = f"rv_L_{timestamp}.png"
289
  if denoising_start==0.0:
290
  options = {
291
  "prompt": [prompt],
 
354
  torch.save(rv_image, sd_latent_path)
355
 
356
  if denoising_end==1.0 and denoising_start!=0.0:
357
+ pyx.upload_to_ftp(filename)
358
  latent_file = f'rv_L_{denoising_start}.l'
359
  loaded_latent = torch.load(latent_file)
360
  print("Shape of loaded latent:", loaded_latent.shape)
 
423
  options["use_resolution_binning"] = True
424
  batch_options = options.copy()
425
  rv_image = pipe(**batch_options).images[0]
 
426
  rv_image.save(sd_image_path,optimize=False,compress_level=0)
427
  pyx.upload_to_ftp(sd_image_path)
428
  torch.set_float32_matmul_precision("medium")
 
432
  downscale_path = f"rv_L_upscale_{timestamp}.png"
433
  downscale1.save(downscale_path,optimize=False,compress_level=0)
434
  pyx.upload_to_ftp(downscale_path)
 
435
  unique_name = str(uuid.uuid4()) + ".png"
436
  os.symlink(sd_image_path, unique_name)
437
  return [unique_name]