Spaces:
Sleeping
Sleeping
| from typing import Union, List | |
| from pathlib import Path | |
| import PIL.Image | |
| import torch | |
| from torch import nn | |
| import torchvision.transforms.functional as F | |
| class Bottleneck(nn.Module): | |
| expansion: int = 4 | |
| def __init__( | |
| self, | |
| inplanes: int, | |
| planes: int, | |
| stride: int = 1, | |
| downsample: nn.Module | None = None, | |
| groups: int = 1, | |
| dilation: int = 1, | |
| ) -> None: | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False) | |
| self.bn1 = nn.BatchNorm2d(planes) | |
| self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=groups, dilation=dilation, bias=False) | |
| self.bn2 = nn.BatchNorm2d(planes) | |
| self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, stride=1, bias=False) | |
| self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.downsample = downsample | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| identity = x | |
| out = self.conv1(x) | |
| out = self.bn1(out) | |
| out = self.relu(out) | |
| out = self.conv2(out) | |
| out = self.bn2(out) | |
| out = self.relu(out) | |
| out = self.conv3(out) | |
| out = self.bn3(out) | |
| if self.downsample is not None: | |
| identity = self.downsample(x) | |
| out += identity | |
| out = self.relu(out) | |
| return out | |
| class ResNet(nn.Module): | |
| def expansion(self): | |
| return 4 | |
| def __init__( | |
| self, | |
| num_classes: int = 1000, | |
| weights_path: str | None = None, | |
| ) -> None: | |
| super().__init__() | |
| if weights_path is not None and not Path(weights_path).exists(): | |
| raise FileNotFoundError(weights_path) | |
| self.inplanes = 64 | |
| self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) | |
| self.bn1 = nn.BatchNorm2d(self.inplanes) | |
| self.relu = nn.ReLU(inplace=True) | |
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
| self.layer1 = self._make_layer(Bottleneck, 64, 3) | |
| self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2) | |
| self.layer3 = self._make_layer(Bottleneck, 256, 6, stride=2) | |
| self.layer4 = self._make_layer(Bottleneck, 512, 3, stride=2) | |
| self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
| self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes) | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
| elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| if weights_path: | |
| self.load_pretrained_weights(weights_path) | |
| def _make_layer( | |
| self, | |
| block: Bottleneck, | |
| planes: int, | |
| blocks: int, | |
| stride: int = 1, | |
| ) -> nn.Sequential: | |
| downsample = None | |
| if stride != 1 or self.inplanes != planes * block.expansion: | |
| downsample = nn.Sequential( | |
| nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), | |
| nn.BatchNorm2d(planes * block.expansion), | |
| ) | |
| layers = [] | |
| layers.append(block(self.inplanes, planes, stride, downsample)) | |
| self.inplanes = planes * block.expansion | |
| for _ in range(1, blocks): | |
| layers.append(block(self.inplanes, planes)) | |
| return nn.Sequential(*layers) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.conv1(x) | |
| x = self.bn1(x) | |
| x = self.relu(x) | |
| x = self.maxpool(x) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.avgpool(x) | |
| x = torch.flatten(x, 1) | |
| x = self.fc(x) | |
| return x | |
| def load_pretrained_weights(self, weights_path: str) -> None: | |
| state_dict = torch.load(weights_path, map_location="cpu") | |
| self.load_state_dict(state_dict) | |
| def predict(self, x: torch.Tensor, top_k: int | None) -> Union[List[int], List[List[int]]]: | |
| output = self.forward(x) | |
| probs = torch.nn.functional.softmax(output, dim=1) | |
| if top_k is not None: | |
| preds = torch.topk(probs, dim=1, k=top_k).indices | |
| return preds.tolist() | |
| else: | |
| pred = torch.argmax(probs, dim=1) | |
| return pred.tolist() | |
| if __name__ == "__main__": | |
| model = ResNet(weights_path="weights/resnet50-0676ba61.pth") | |
| num_params = sum([p.numel() for p in model.parameters()]) | |
| print(f"params: {num_params/1e6:.2f} M") | |
| model.eval() | |
| image = PIL.Image.open("assets\cat.jpg").convert("RGB") | |
| image = F.resize(image, (224, 224)) | |
| image = F.to_tensor(image) | |
| image = F.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
| image = image.unsqueeze(0) | |
| predicted_class = model.predict(image, top_k=10) | |
| print(f"predicted class: {predicted_class}") | |
| # https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/ | |