File size: 5,282 Bytes
f096e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from typing import Union, List
from pathlib import Path
import PIL.Image
import torch
from torch import nn
import torchvision.transforms.functional as F


class Bottleneck(nn.Module):
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: nn.Module | None = None,
        groups: int = 1,
        dilation: int = 1,
    ) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, groups=groups, dilation=dilation, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        identity = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)
        return out
    

class ResNet(nn.Module):
    @property
    def expansion(self):
        return 4
    def __init__(
        self,
        num_classes: int = 1000,
        weights_path: str | None = None,
    ) -> None:
        super().__init__()

        if weights_path is not None and not Path(weights_path).exists():
            raise FileNotFoundError(weights_path)
        
        self.inplanes = 64
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(Bottleneck, 64, 3)
        self.layer2 = self._make_layer(Bottleneck, 128, 4, stride=2)
        self.layer3 = self._make_layer(Bottleneck, 256, 6, stride=2)
        self.layer4 = self._make_layer(Bottleneck, 512, 3, stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
        
        if weights_path:
            self.load_pretrained_weights(weights_path)
    
    def _make_layer(
        self,
        block: Bottleneck,
        planes: int,
        blocks: int,
        stride: int = 1,
    ) -> nn.Sequential:
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))
        return nn.Sequential(*layers)
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x
    
    def load_pretrained_weights(self, weights_path: str) -> None:
        state_dict = torch.load(weights_path, map_location="cpu")
        self.load_state_dict(state_dict)

    @torch.inference_mode()
    def predict(self, x: torch.Tensor, top_k: int | None) -> Union[List[int], List[List[int]]]:
        output = self.forward(x)
        probs = torch.nn.functional.softmax(output, dim=1)
        if top_k is not None:
            preds = torch.topk(probs, dim=1, k=top_k).indices
            return preds.tolist()
        else:
            pred = torch.argmax(probs, dim=1)
            return pred.tolist()


if __name__ == "__main__":
    model = ResNet(weights_path="weights/resnet50-0676ba61.pth")
    num_params = sum([p.numel() for p in model.parameters()])
    print(f"params: {num_params/1e6:.2f} M")

    model.eval()
    image = PIL.Image.open("assets\cat.jpg").convert("RGB")
    image = F.resize(image, (224, 224))
    image = F.to_tensor(image)
    image = F.normalize(image, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    image = image.unsqueeze(0)
    predicted_class = model.predict(image, top_k=10)
    print(f"predicted class: {predicted_class}")
    # https://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/