Spaces:
Running
on
Zero
Running
on
Zero
add new models
#1
by
merve
HF Staff
- opened
- app.py +103 -22
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -10,10 +10,43 @@ def extract_model_short_name(model_id):
|
|
| 10 |
|
| 11 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
| 12 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
|
|
|
|
|
|
| 13 |
|
| 14 |
model_llmdet_name = extract_model_short_name(model_llmdet_id)
|
| 15 |
model_mm_grounding_name = extract_model_short_name(model_mm_grounding_id)
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
@spaces.GPU
|
| 18 |
def detect_llmdet(image: Image.Image, prompts: list, threshold: float):
|
| 19 |
t0 = time.perf_counter()
|
|
@@ -42,7 +75,6 @@ def detect_llmdet(image: Image.Image, prompts: list, threshold: float):
|
|
| 42 |
time_taken = f"**Inference time ({model_llmdet_name}):** {elapsed_ms:.0f} ms"
|
| 43 |
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 44 |
return annotations, raw_text, time_taken
|
| 45 |
-
|
| 46 |
@spaces.GPU
|
| 47 |
def detect_mm_grounding(image: Image.Image, prompts: list, threshold: float):
|
| 48 |
t0 = time.perf_counter()
|
|
@@ -72,14 +104,46 @@ def detect_mm_grounding(image: Image.Image, prompts: list, threshold: float):
|
|
| 72 |
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 73 |
return annotations, raw_text, time_taken
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
def run_detection(image, prompts_str,
|
| 77 |
if image is None:
|
| 78 |
return (None, []), "No detections", "", (None, []), "No detections", ""
|
| 79 |
prompts = [p.strip() for p in prompts_str.split(",")]
|
| 80 |
-
ann_llm, raw_llm, time_llm = detect_llmdet(image, prompts,
|
| 81 |
-
ann_mm, raw_mm, time_mm = detect_mm_grounding(image, prompts,
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
|
| 84 |
with gr.Blocks() as app:
|
| 85 |
gr.Markdown("# Zero-Shot Object Detection Arena")
|
|
@@ -88,35 +152,52 @@ with gr.Blocks() as app:
|
|
| 88 |
with gr.Column(scale=1):
|
| 89 |
image = gr.Image(type="pil", label="Upload an image", height=400)
|
| 90 |
prompts = gr.Textbox(label="Prompts (comma-separated)", value="a cat, a remote control")
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
generate_btn = gr.Button(value="Detect")
|
| 93 |
-
with gr.
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
gr.Markdown("### Examples")
|
| 102 |
example_data = [
|
| 103 |
-
["http://images.cocodataset.org/val2017/000000039769.jpg", "a cat, a remote control", 0.
|
| 104 |
-
["http://images.cocodataset.org/val2017/000000000139.jpg", "a person, a tv, a remote", 0.
|
| 105 |
]
|
|
|
|
| 106 |
gr.Examples(
|
| 107 |
examples=example_data,
|
| 108 |
-
inputs=[image, prompts,
|
| 109 |
-
label="Click an example to populate the
|
| 110 |
)
|
|
|
|
|
|
|
| 111 |
generate_btn.click(
|
| 112 |
fn=run_detection,
|
| 113 |
-
inputs=
|
| 114 |
-
outputs=
|
| 115 |
)
|
| 116 |
image.upload(
|
| 117 |
fn=run_detection,
|
| 118 |
-
inputs=
|
| 119 |
-
outputs=
|
| 120 |
)
|
| 121 |
|
| 122 |
app.launch()
|
|
|
|
| 10 |
|
| 11 |
model_llmdet_id = "iSEE-Laboratory/llmdet_tiny"
|
| 12 |
model_mm_grounding_id = "rziga/mm_grounding_dino_tiny_o365v1_goldg"
|
| 13 |
+
model_omdet_id = "omlab/omdet-turbo-swin-tiny-hf"
|
| 14 |
+
model_owlv2_id = "google/owlv2-large-patch14-ensemble"
|
| 15 |
|
| 16 |
model_llmdet_name = extract_model_short_name(model_llmdet_id)
|
| 17 |
model_mm_grounding_name = extract_model_short_name(model_mm_grounding_id)
|
| 18 |
+
model_omdet_name = extract_model_short_name(model_omdet_id)
|
| 19 |
+
model_owlv2_name = extract_model_short_name(model_owlv2_id)
|
| 20 |
|
| 21 |
+
@spaces.GPU
|
| 22 |
+
def detect_omdet(image: Image.Image, prompts: list, threshold: float):
|
| 23 |
+
t0 = time.perf_counter()
|
| 24 |
+
model_id = model_omdet_id
|
| 25 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 27 |
+
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
| 28 |
+
texts = [prompts]
|
| 29 |
+
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
outputs = model(**inputs)
|
| 32 |
+
results = processor.post_process_grounded_object_detection(
|
| 33 |
+
outputs,
|
| 34 |
+
threshold=threshold,
|
| 35 |
+
target_sizes=[image.size[::-1]]
|
| 36 |
+
)
|
| 37 |
+
result = results[0]
|
| 38 |
+
annotations = []
|
| 39 |
+
raw_results = []
|
| 40 |
+
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
| 41 |
+
if score >= threshold:
|
| 42 |
+
label_name = prompts[label]
|
| 43 |
+
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
| 44 |
+
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {score:.2f}"))
|
| 45 |
+
raw_results.append(f"Detected {label_name} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
| 46 |
+
elapsed_ms = (time.perf_counter() - t0) * 1000
|
| 47 |
+
time_taken = f"**Inference time ({model_omdet_name}):** {elapsed_ms:.0f} ms"
|
| 48 |
+
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 49 |
+
return annotations, raw_text, time_taken
|
| 50 |
@spaces.GPU
|
| 51 |
def detect_llmdet(image: Image.Image, prompts: list, threshold: float):
|
| 52 |
t0 = time.perf_counter()
|
|
|
|
| 75 |
time_taken = f"**Inference time ({model_llmdet_name}):** {elapsed_ms:.0f} ms"
|
| 76 |
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 77 |
return annotations, raw_text, time_taken
|
|
|
|
| 78 |
@spaces.GPU
|
| 79 |
def detect_mm_grounding(image: Image.Image, prompts: list, threshold: float):
|
| 80 |
t0 = time.perf_counter()
|
|
|
|
| 104 |
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 105 |
return annotations, raw_text, time_taken
|
| 106 |
|
| 107 |
+
@spaces.GPU
|
| 108 |
+
def detect_owlv2(image: Image.Image, prompts: list, threshold: float):
|
| 109 |
+
t0 = time.perf_counter()
|
| 110 |
+
model_id = model_owlv2_id
|
| 111 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 112 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 113 |
+
model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device).eval()
|
| 114 |
+
texts = [prompts]
|
| 115 |
+
inputs = processor(images=image, text=texts, return_tensors="pt").to(device)
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
outputs = model(**inputs)
|
| 118 |
+
results = processor.post_process_grounded_object_detection(
|
| 119 |
+
outputs,
|
| 120 |
+
threshold=threshold,
|
| 121 |
+
target_sizes=[image.size[::-1]]
|
| 122 |
+
)
|
| 123 |
+
result = results[0]
|
| 124 |
+
annotations = []
|
| 125 |
+
raw_results = []
|
| 126 |
+
for box, score, label in zip(result["boxes"], result["scores"], result["labels"]):
|
| 127 |
+
if score >= threshold:
|
| 128 |
+
label_name = prompts[label]
|
| 129 |
+
xmin, ymin, xmax, ymax = [int(x) for x in box.tolist()]
|
| 130 |
+
annotations.append(((xmin, ymin, xmax, ymax), f"{label_name} {score:.2f}"))
|
| 131 |
+
raw_results.append(f"Detected {label_name} with confidence {score:.2f} at location [{xmin}, {ymin}, {xmax}, {ymax}]")
|
| 132 |
+
elapsed_ms = (time.perf_counter() - t0) * 1000
|
| 133 |
+
time_taken = f"**Inference time ({model_owlv2_name}):** {elapsed_ms:.0f} ms"
|
| 134 |
+
raw_text = "\n".join(raw_results) if raw_results else "No detections"
|
| 135 |
+
return annotations, raw_text, time_taken
|
| 136 |
+
|
| 137 |
|
| 138 |
+
def run_detection(image, prompts_str, threshold_llm, threshold_mm, threshold_owlv2, threshold_omdet):
|
| 139 |
if image is None:
|
| 140 |
return (None, []), "No detections", "", (None, []), "No detections", ""
|
| 141 |
prompts = [p.strip() for p in prompts_str.split(",")]
|
| 142 |
+
ann_llm, raw_llm, time_llm = detect_llmdet(image, prompts, threshold_llm)
|
| 143 |
+
ann_mm, raw_mm, time_mm = detect_mm_grounding(image, prompts, threshold_mm)
|
| 144 |
+
ann_owlv2, raw_owlv2, time_owlv2 = detect_owlv2(image, prompts, threshold_owlv2)
|
| 145 |
+
ann_omdet, raw_omdet, time_omdet = detect_omdet(image, prompts, threshold_omdet)
|
| 146 |
+
return (image, ann_llm), raw_llm, time_llm, (image, ann_mm), raw_mm, time_mm, (image, ann_owlv2), raw_owlv2, time_owlv2, (image, ann_omdet), raw_omdet, time_omdet
|
| 147 |
|
| 148 |
with gr.Blocks() as app:
|
| 149 |
gr.Markdown("# Zero-Shot Object Detection Arena")
|
|
|
|
| 152 |
with gr.Column(scale=1):
|
| 153 |
image = gr.Image(type="pil", label="Upload an image", height=400)
|
| 154 |
prompts = gr.Textbox(label="Prompts (comma-separated)", value="a cat, a remote control")
|
| 155 |
+
with gr.Accordion("Per-model confidence thresholds", open=True):
|
| 156 |
+
threshold_llm = gr.Slider(label="Threshold for LLMDet", minimum=0.0, maximum=1.0, value=0.3)
|
| 157 |
+
threshold_mm = gr.Slider(label="Threshold for MM GroundingDINO Tiny", minimum=0.0, maximum=1.0, value=0.3)
|
| 158 |
+
threshold_owlv2 = gr.Slider(label="Threshold for OwlV2 Large", minimum=0.0, maximum=1.0, value=0.1)
|
| 159 |
+
threshold_omdet = gr.Slider(label="Threshold for OMDet Turbo Swin Tiny", minimum=0.0, maximum=1.0, value=0.2)
|
| 160 |
generate_btn = gr.Button(value="Detect")
|
| 161 |
+
with gr.Row():
|
| 162 |
+
with gr.Column(scale=2):
|
| 163 |
+
output_image_llm = gr.AnnotatedImage(label=f"Annotated image for {model_llmdet_name}", height=400)
|
| 164 |
+
output_text_llm = gr.Textbox(label=f"Model detections for {model_llmdet_name}", lines=5)
|
| 165 |
+
output_time_llm = gr.Markdown()
|
| 166 |
+
with gr.Column(scale=2):
|
| 167 |
+
output_image_mm = gr.AnnotatedImage(label=f"Annotated image for {model_mm_grounding_name}", height=400)
|
| 168 |
+
output_text_mm = gr.Textbox(label=f"Model detections for {model_mm_grounding_name}", lines=5)
|
| 169 |
+
output_time_mm = gr.Markdown()
|
| 170 |
+
with gr.Row():
|
| 171 |
+
with gr.Column(scale=2):
|
| 172 |
+
output_image_owlv2 = gr.AnnotatedImage(label=f"Annotated image for {model_owlv2_name}", height=400)
|
| 173 |
+
output_text_owlv2 = gr.Textbox(label=f"Model detections for {model_owlv2_name}", lines=5)
|
| 174 |
+
output_time_owlv2 = gr.Markdown()
|
| 175 |
+
with gr.Column(scale=2):
|
| 176 |
+
output_image_omdet = gr.AnnotatedImage(label=f"Annotated image for {model_omdet_name}", height=400)
|
| 177 |
+
output_text_omdet = gr.Textbox(label=f"Model detections for {model_omdet_name}", lines=5)
|
| 178 |
+
output_time_omdet = gr.Markdown()
|
| 179 |
gr.Markdown("### Examples")
|
| 180 |
example_data = [
|
| 181 |
+
["http://images.cocodataset.org/val2017/000000039769.jpg", "a cat, a remote control", 0.30, 0.30, 0.10, 0.30],
|
| 182 |
+
["http://images.cocodataset.org/val2017/000000000139.jpg", "a person, a tv, a remote", 0.35, 0.30, 0.12, 0.30],
|
| 183 |
]
|
| 184 |
+
|
| 185 |
gr.Examples(
|
| 186 |
examples=example_data,
|
| 187 |
+
inputs=[image, prompts, threshold_llm, threshold_mm, threshold_owlv2, threshold_omdet],
|
| 188 |
+
label="Click an example to populate the inputs",
|
| 189 |
)
|
| 190 |
+
inputs = [image, prompts, threshold_llm, threshold_mm, threshold_owlv2, threshold_omdet]
|
| 191 |
+
outputs = [output_image_llm, output_text_llm, output_time_llm, output_image_mm, output_text_mm, output_time_mm, output_image_owlv2, output_text_owlv2, output_time_owlv2, output_image_omdet, output_text_omdet, output_time_omdet]
|
| 192 |
generate_btn.click(
|
| 193 |
fn=run_detection,
|
| 194 |
+
inputs=inputs,
|
| 195 |
+
outputs=outputs,
|
| 196 |
)
|
| 197 |
image.upload(
|
| 198 |
fn=run_detection,
|
| 199 |
+
inputs=inputs,
|
| 200 |
+
outputs=outputs,
|
| 201 |
)
|
| 202 |
|
| 203 |
app.launch()
|
requirements.txt
CHANGED
|
@@ -4,4 +4,6 @@ pillow
|
|
| 4 |
spaces
|
| 5 |
gradio
|
| 6 |
transformers
|
| 7 |
-
accelerate
|
|
|
|
|
|
|
|
|
| 4 |
spaces
|
| 5 |
gradio
|
| 6 |
transformers
|
| 7 |
+
accelerate
|
| 8 |
+
scipy
|
| 9 |
+
timm
|