Spaces:
Paused
Paused
File size: 6,785 Bytes
5109aa7 933dfa2 451f190 d727a1f 451f190 d727a1f 451f190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import nltk
from transformers.models.roberta.modeling_roberta import *
from transformers import RobertaForQuestionAnswering
from nltk import word_tokenize
import json
import pandas as pd
import re
# Download punkt for nltk
nltk.download('punkt')
# Load PhoBert model and tokenizer
phoBert_model = AutoModelForSequenceClassification.from_pretrained('minhdang14902/PhoBert_Edu')
phoBert_tokenizer = AutoTokenizer.from_pretrained('minhdang14902/PhoBert_Edu')
chatbot_pipeline = pipeline("sentiment-analysis", model=phoBert_model, tokenizer=phoBert_tokenizer)
# Load spaCy Vietnamese model
# nlp = spacy.load('vi_core_news_lg')
# Load intents from json file
def load_json_file(filename):
with open(filename) as f:
file = json.load(f)
return file
filename = './data/QA_Legal_converted_merged.json'
intents = load_json_file(filename)
def create_df():
df = pd.DataFrame({
'Pattern': [],
'Tag': []
})
return df
df = create_df()
def extract_json_info(json_file, df):
for intent in json_file['intents']:
for pattern in intent['patterns']:
sentence_tag = [pattern, intent['tag']]
df.loc[len(df.index)] = sentence_tag
return df
df = extract_json_info(intents, df)
df2 = df.copy()
labels = df2['Tag'].unique().tolist()
labels = [s.strip() for s in labels]
num_labels = len(labels)
id2label = {id: label for id, label in enumerate(labels)}
label2id = {label: id for id, label in enumerate(labels)}
# def tokenize_with_spacy(text):
# doc = nlp(text)
# tokens = [token.text for token in doc]
# tokenized_text = ' '.join(tokens)
# tokenized_text = re.sub(r'(?<!\s)([.,?])', r' \1', tokenized_text)
# tokenized_text = re.sub(r'([.,?])(?!\s)', r'\1 ', tokenized_text)
# return tokenized_text
# Load Roberta model and tokenizer
roberta_model_checkpoint = "minhdang14902/Roberta_edu"
roberta_tokenizer = AutoTokenizer.from_pretrained(roberta_model_checkpoint)
roberta_model = MRCQuestionAnswering.from_pretrained(roberta_model_checkpoint)
def chatRoberta(text):
label = label2id[chatbot_pipeline(text)[0]['label']]
response = intents['intents'][label]['responses']
QA_input = {
'question': text,
'context': response[0]
}
# Tokenize input
encoded_input = tokenize_function(QA_input, roberta_tokenizer)
# Prepare batch samples
batch_samples = data_collator([encoded_input], roberta_tokenizer)
# Model prediction
roberta_model.eval()
with torch.no_grad():
inputs = {
'input_ids': batch_samples['input_ids'],
'attention_mask': batch_samples['attention_mask'],
'words_lengths': batch_samples['words_lengths'],
}
outputs = roberta_model(**inputs)
# Extract answer
result = extract_answer([encoded_input], outputs, roberta_tokenizer)
return result
def tokenize_function(example, tokenizer):
question_word = word_tokenize(example["question"])
context_word = word_tokenize(example["context"])
question_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in question_word]
context_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in context_word]
valid = True
if len([j for i in question_sub_words_ids + context_sub_words_ids for j in i]) > tokenizer.model_max_length - 1:
valid = False
question_sub_words_ids = [[tokenizer.bos_token_id]] + question_sub_words_ids + [[tokenizer.eos_token_id]]
context_sub_words_ids = context_sub_words_ids + [[tokenizer.eos_token_id]]
input_ids = [j for i in question_sub_words_ids + context_sub_words_ids for j in i]
if len(input_ids) > tokenizer.model_max_length:
valid = False
words_lengths = [len(item) for item in question_sub_words_ids + context_sub_words_ids]
return {
"input_ids": input_ids,
"words_lengths": words_lengths,
"valid": valid
}
def data_collator(samples, tokenizer):
if len(samples) == 0:
return {}
def collate_tokens(values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False):
size = max(v.size(0) for v in values)
res = values[0].new(len(values), size).fill_(pad_idx)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
if move_eos_to_beginning:
assert src[-1] == eos_idx
dst[0] = eos_idx
dst[1:] = src[:-1]
else:
dst.copy_(src)
for i, v in enumerate(values):
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
return res
input_ids = collate_tokens([torch.tensor(item['input_ids']) for item in samples], pad_idx=tokenizer.pad_token_id)
attention_mask = torch.zeros_like(input_ids)
for i in range(len(samples)):
attention_mask[i][:len(samples[i]['input_ids'])] = 1
words_lengths = collate_tokens([torch.tensor(item['words_lengths']) for item in samples], pad_idx=0)
batch_samples = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'words_lengths': words_lengths,
}
return batch_samples
def extract_answer(inputs, outputs, tokenizer):
plain_result = []
for sample_input, start_logit, end_logit in zip(inputs, outputs.start_logits, outputs.end_logits):
sample_words_length = sample_input['words_lengths']
input_ids = sample_input['input_ids']
answer_start = sum(sample_words_length[:torch.argmax(start_logit)])
answer_end = sum(sample_words_length[:torch.argmax(end_logit) + 1])
if answer_start <= answer_end:
answer = tokenizer.convert_tokens_to_string(
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
if answer == tokenizer.bos_token:
answer = ''
else:
answer = ''
score_start = torch.max(torch.softmax(start_logit, dim=-1)).cpu().detach().numpy().tolist()
score_end = torch.max(torch.softmax(end_logit, dim=-1)).cpu().detach().numpy().tolist()
plain_result.append({
"answer": answer,
"score_start": score_start,
"score_end": score_end
})
return plain_result
st.title("Chatbot Interface")
st.write("Hi! I am your virtual assistant. Feel free to ask, and I'll do my best to provide you with answers and assistance.")
text = st.text_input("User: ")
if st.button("Submit"):
if text:
result = chatRoberta(text)
st.write(f"Chatbot: {result}")
else:
st.write("Please enter a message.")
|