Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,324 +1,194 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
def
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
return
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
|
| 196 |
-
if answer == tokenizer.bos_token:
|
| 197 |
-
answer = ''
|
| 198 |
-
else:
|
| 199 |
-
answer = ''
|
| 200 |
-
|
| 201 |
-
score_start = torch.max(torch.softmax(start_logit, dim=-1)).cpu().detach().numpy().tolist()
|
| 202 |
-
score_end = torch.max(torch.softmax(end_logit, dim=-1)).cpu().detach().numpy().tolist()
|
| 203 |
-
plain_result.append({
|
| 204 |
-
"answer": answer,
|
| 205 |
-
"score_start": score_start,
|
| 206 |
-
"score_end": score_end
|
| 207 |
-
})
|
| 208 |
-
return plain_result
|
| 209 |
-
|
| 210 |
-
# Load mô hình Phobert
|
| 211 |
-
model_checkpoint = "minhdang14902/Roberta_edu"
|
| 212 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 213 |
-
model = MRCQuestionAnswering.from_pretrained(model_checkpoint)
|
| 214 |
-
|
| 215 |
-
# Load mô hình Roberta
|
| 216 |
-
from transformers import AutoModelForSequenceClassification
|
| 217 |
-
model_sentiment = AutoModelForSequenceClassification.from_pretrained('minhdang14902/PhoBert_Edu')
|
| 218 |
-
tokenizer_sentiment = AutoTokenizer.from_pretrained('minhdang14902/PhoBert_Edu')
|
| 219 |
-
chatbot_sentiment = pipeline("sentiment-analysis", model=model_sentiment, tokenizer=tokenizer_sentiment)
|
| 220 |
-
|
| 221 |
-
import spacy
|
| 222 |
-
import json
|
| 223 |
-
# Khởi tạo mô hình spaCy tiếng Việt
|
| 224 |
-
nlp = spacy.load('vi_core_news_lg')
|
| 225 |
-
import pandas as pd
|
| 226 |
-
|
| 227 |
-
def load_json_file(filename):
|
| 228 |
-
with open(filename) as f:
|
| 229 |
-
file = json.load(f)
|
| 230 |
-
return file
|
| 231 |
-
|
| 232 |
-
filename = './data/QA_Legal_converted_merged.json'
|
| 233 |
-
intents = load_json_file(filename)
|
| 234 |
-
|
| 235 |
-
def create_df():
|
| 236 |
-
df = pd.DataFrame({
|
| 237 |
-
'Pattern' : [],
|
| 238 |
-
'Tag' : []
|
| 239 |
-
})
|
| 240 |
-
return df
|
| 241 |
-
|
| 242 |
-
df = create_df()
|
| 243 |
-
|
| 244 |
-
def extract_json_info(json_file, df):
|
| 245 |
-
for intent in json_file['intents']:
|
| 246 |
-
for pattern in intent['patterns']:
|
| 247 |
-
sentence_tag = [pattern, intent['tag']]
|
| 248 |
-
df.loc[len(df.index)] = sentence_tag
|
| 249 |
-
return df
|
| 250 |
-
|
| 251 |
-
df = extract_json_info(intents, df)
|
| 252 |
-
df2 = df.copy()
|
| 253 |
-
|
| 254 |
-
labels = df2['Tag'].unique().tolist()
|
| 255 |
-
labels = [s.strip() for s in labels]
|
| 256 |
-
num_labels = len(labels)
|
| 257 |
-
id2label = {i: label for i, label in enumerate(labels)}
|
| 258 |
-
label2id = {v: k for k, v in id2label.items()}
|
| 259 |
-
|
| 260 |
-
def preprocess(text, df):
|
| 261 |
-
def remove_numbers_and_special_chars(text):
|
| 262 |
-
text = re.sub(r'\d+', '', text)
|
| 263 |
-
text = re.sub(r'[^\w\s]', '', text)
|
| 264 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
| 265 |
-
return text
|
| 266 |
-
|
| 267 |
-
text = text.lower()
|
| 268 |
-
text = remove_numbers_and_special_chars(text)
|
| 269 |
-
text_nlp = nlp(text)
|
| 270 |
-
filtered_sentence = [token.text for token in text_nlp if not token.is_stop]
|
| 271 |
-
text = ' '.join(filtered_sentence)
|
| 272 |
-
|
| 273 |
-
return text
|
| 274 |
-
|
| 275 |
-
def predict(text):
|
| 276 |
-
new_text = preprocess(text, df2)
|
| 277 |
-
probs = chatbot_sentiment(new_text)
|
| 278 |
-
predicted_label = max(probs, key=lambda x: x['score'])['label']
|
| 279 |
-
return predicted_label
|
| 280 |
-
|
| 281 |
-
# Thiết lập giao diện người dùng bằng Streamlit
|
| 282 |
-
st.title("Vietnamese Legal Q&A Chatbot")
|
| 283 |
-
st.write("Nhập câu hỏi của bạn về các vấn đề pháp lý:")
|
| 284 |
-
|
| 285 |
-
user_question = st.text_input("Câu hỏi:")
|
| 286 |
-
|
| 287 |
-
if st.button("Gửi câu hỏi"):
|
| 288 |
-
if user_question:
|
| 289 |
-
st.write("Câu hỏi của bạn:", user_question)
|
| 290 |
-
|
| 291 |
-
# Tìm câu trả lời từ tập dữ liệu intents
|
| 292 |
-
found_intent = None
|
| 293 |
-
for intent in intents['intents']:
|
| 294 |
-
if user_question.lower() in [pattern.lower() for pattern in intent['patterns']]:
|
| 295 |
-
found_intent = intent
|
| 296 |
-
break
|
| 297 |
-
|
| 298 |
-
if found_intent:
|
| 299 |
-
answer = found_intent['responses'][0]
|
| 300 |
-
st.write("Câu trả lời:", answer)
|
| 301 |
-
else:
|
| 302 |
-
result = predict(user_question)
|
| 303 |
-
if result:
|
| 304 |
-
st.write("Thẻ dự đoán:", result)
|
| 305 |
-
|
| 306 |
-
# Tạo đầu vào cho mô hình QA
|
| 307 |
-
qa_inputs = [{
|
| 308 |
-
'context': found_intent['responses'][0] if found_intent else 'Tôi không có thông tin phù hợp.',
|
| 309 |
-
'question': user_question
|
| 310 |
-
}]
|
| 311 |
-
|
| 312 |
-
qa_features = []
|
| 313 |
-
for qa_input in qa_inputs:
|
| 314 |
-
feature = tokenize_function(qa_input, tokenizer)
|
| 315 |
-
if feature["valid"]:
|
| 316 |
-
qa_features.append(feature)
|
| 317 |
-
|
| 318 |
-
qa_batch = data_collator(qa_features, tokenizer)
|
| 319 |
-
with torch.no_grad():
|
| 320 |
-
outputs = model(**qa_batch)
|
| 321 |
-
|
| 322 |
-
answers = extract_answer(qa_features, outputs, tokenizer)
|
| 323 |
-
best_answer = max(answers, key=lambda x: (x['score_start'] + x['score_end']) / 2)
|
| 324 |
-
st.write("Câu trả lời:", best_answer['answer'])
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
+
import nltk
|
| 5 |
+
from transformers.models.roberta.modeling_roberta import *
|
| 6 |
+
from transformers import RobertaForQuestionAnswering
|
| 7 |
+
from nltk import word_tokenize
|
| 8 |
+
import spacy
|
| 9 |
+
import json
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import re
|
| 12 |
+
|
| 13 |
+
# Download punkt for nltk
|
| 14 |
+
nltk.download('punkt')
|
| 15 |
+
|
| 16 |
+
# Load PhoBert model and tokenizer
|
| 17 |
+
phoBert_model = AutoModelForSequenceClassification.from_pretrained('minhdang14902/PhoBert_Edu')
|
| 18 |
+
phoBert_tokenizer = AutoTokenizer.from_pretrained('minhdang14902/PhoBert_Edu')
|
| 19 |
+
chatbot_pipeline = pipeline("sentiment-analysis", model=phoBert_model, tokenizer=phoBert_tokenizer)
|
| 20 |
+
|
| 21 |
+
# Load spaCy Vietnamese model
|
| 22 |
+
nlp = spacy.load('vi_core_news_lg')
|
| 23 |
+
|
| 24 |
+
# Load intents from json file
|
| 25 |
+
def load_json_file(filename):
|
| 26 |
+
with open(filename) as f:
|
| 27 |
+
file = json.load(f)
|
| 28 |
+
return file
|
| 29 |
+
|
| 30 |
+
filename = './data/QA_Legal_converted_merged.json'
|
| 31 |
+
intents = load_json_file(filename)
|
| 32 |
+
|
| 33 |
+
def create_df():
|
| 34 |
+
df = pd.DataFrame({
|
| 35 |
+
'Pattern': [],
|
| 36 |
+
'Tag': []
|
| 37 |
+
})
|
| 38 |
+
return df
|
| 39 |
+
|
| 40 |
+
df = create_df()
|
| 41 |
+
|
| 42 |
+
def extract_json_info(json_file, df):
|
| 43 |
+
for intent in json_file['intents']:
|
| 44 |
+
for pattern in intent['patterns']:
|
| 45 |
+
sentence_tag = [pattern, intent['tag']]
|
| 46 |
+
df.loc[len(df.index)] = sentence_tag
|
| 47 |
+
return df
|
| 48 |
+
|
| 49 |
+
df = extract_json_info(intents, df)
|
| 50 |
+
df2 = df.copy()
|
| 51 |
+
|
| 52 |
+
labels = df2['Tag'].unique().tolist()
|
| 53 |
+
labels = [s.strip() for s in labels]
|
| 54 |
+
num_labels = len(labels)
|
| 55 |
+
id2label = {id: label for id, label in enumerate(labels)}
|
| 56 |
+
label2id = {label: id for id, label in enumerate(labels)}
|
| 57 |
+
|
| 58 |
+
def tokenize_with_spacy(text):
|
| 59 |
+
doc = nlp(text)
|
| 60 |
+
tokens = [token.text for token in doc]
|
| 61 |
+
tokenized_text = ' '.join(tokens)
|
| 62 |
+
tokenized_text = re.sub(r'(?<!\s)([.,?])', r' \1', tokenized_text)
|
| 63 |
+
tokenized_text = re.sub(r'([.,?])(?!\s)', r'\1 ', tokenized_text)
|
| 64 |
+
return tokenized_text
|
| 65 |
+
|
| 66 |
+
# Load Roberta model and tokenizer
|
| 67 |
+
roberta_model_checkpoint = "minhdang14902/Roberta_edu"
|
| 68 |
+
roberta_tokenizer = AutoTokenizer.from_pretrained(roberta_model_checkpoint)
|
| 69 |
+
roberta_model = MRCQuestionAnswering.from_pretrained(roberta_model_checkpoint)
|
| 70 |
+
|
| 71 |
+
def chatRoberta(text):
|
| 72 |
+
label = label2id[chatbot_pipeline(text)[0]['label']]
|
| 73 |
+
response = intents['intents'][label]['responses']
|
| 74 |
+
|
| 75 |
+
QA_input = {
|
| 76 |
+
'question': text,
|
| 77 |
+
'context': response[0]
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
# Tokenize input
|
| 81 |
+
encoded_input = tokenize_function(QA_input, roberta_tokenizer)
|
| 82 |
+
|
| 83 |
+
# Prepare batch samples
|
| 84 |
+
batch_samples = data_collator([encoded_input], roberta_tokenizer)
|
| 85 |
+
|
| 86 |
+
# Model prediction
|
| 87 |
+
roberta_model.eval()
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
inputs = {
|
| 90 |
+
'input_ids': batch_samples['input_ids'],
|
| 91 |
+
'attention_mask': batch_samples['attention_mask'],
|
| 92 |
+
'words_lengths': batch_samples['words_lengths'],
|
| 93 |
+
}
|
| 94 |
+
outputs = roberta_model(**inputs)
|
| 95 |
+
|
| 96 |
+
# Extract answer
|
| 97 |
+
result = extract_answer([encoded_input], outputs, roberta_tokenizer)
|
| 98 |
+
return result
|
| 99 |
+
|
| 100 |
+
def tokenize_function(example, tokenizer):
|
| 101 |
+
question_word = word_tokenize(example["question"])
|
| 102 |
+
context_word = word_tokenize(example["context"])
|
| 103 |
+
|
| 104 |
+
question_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in question_word]
|
| 105 |
+
context_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in context_word]
|
| 106 |
+
valid = True
|
| 107 |
+
if len([j for i in question_sub_words_ids + context_sub_words_ids for j in i]) > tokenizer.model_max_length - 1:
|
| 108 |
+
valid = False
|
| 109 |
+
|
| 110 |
+
question_sub_words_ids = [[tokenizer.bos_token_id]] + question_sub_words_ids + [[tokenizer.eos_token_id]]
|
| 111 |
+
context_sub_words_ids = context_sub_words_ids + [[tokenizer.eos_token_id]]
|
| 112 |
+
|
| 113 |
+
input_ids = [j for i in question_sub_words_ids + context_sub_words_ids for j in i]
|
| 114 |
+
if len(input_ids) > tokenizer.model_max_length:
|
| 115 |
+
valid = False
|
| 116 |
+
|
| 117 |
+
words_lengths = [len(item) for item in question_sub_words_ids + context_sub_words_ids]
|
| 118 |
+
|
| 119 |
+
return {
|
| 120 |
+
"input_ids": input_ids,
|
| 121 |
+
"words_lengths": words_lengths,
|
| 122 |
+
"valid": valid
|
| 123 |
+
}
|
| 124 |
+
|
| 125 |
+
def data_collator(samples, tokenizer):
|
| 126 |
+
if len(samples) == 0:
|
| 127 |
+
return {}
|
| 128 |
+
|
| 129 |
+
def collate_tokens(values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False):
|
| 130 |
+
size = max(v.size(0) for v in values)
|
| 131 |
+
res = values[0].new(len(values), size).fill_(pad_idx)
|
| 132 |
+
|
| 133 |
+
def copy_tensor(src, dst):
|
| 134 |
+
assert dst.numel() == src.numel()
|
| 135 |
+
if move_eos_to_beginning:
|
| 136 |
+
assert src[-1] == eos_idx
|
| 137 |
+
dst[0] = eos_idx
|
| 138 |
+
dst[1:] = src[:-1]
|
| 139 |
+
else:
|
| 140 |
+
dst.copy_(src)
|
| 141 |
+
|
| 142 |
+
for i, v in enumerate(values):
|
| 143 |
+
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
|
| 144 |
+
return res
|
| 145 |
+
|
| 146 |
+
input_ids = collate_tokens([torch.tensor(item['input_ids']) for item in samples], pad_idx=tokenizer.pad_token_id)
|
| 147 |
+
attention_mask = torch.zeros_like(input_ids)
|
| 148 |
+
for i in range(len(samples)):
|
| 149 |
+
attention_mask[i][:len(samples[i]['input_ids'])] = 1
|
| 150 |
+
words_lengths = collate_tokens([torch.tensor(item['words_lengths']) for item in samples], pad_idx=0)
|
| 151 |
+
|
| 152 |
+
batch_samples = {
|
| 153 |
+
'input_ids': input_ids,
|
| 154 |
+
'attention_mask': attention_mask,
|
| 155 |
+
'words_lengths': words_lengths,
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
return batch_samples
|
| 159 |
+
|
| 160 |
+
def extract_answer(inputs, outputs, tokenizer):
|
| 161 |
+
plain_result = []
|
| 162 |
+
for sample_input, start_logit, end_logit in zip(inputs, outputs.start_logits, outputs.end_logits):
|
| 163 |
+
sample_words_length = sample_input['words_lengths']
|
| 164 |
+
input_ids = sample_input['input_ids']
|
| 165 |
+
answer_start = sum(sample_words_length[:torch.argmax(start_logit)])
|
| 166 |
+
answer_end = sum(sample_words_length[:torch.argmax(end_logit) + 1])
|
| 167 |
+
|
| 168 |
+
if answer_start <= answer_end:
|
| 169 |
+
answer = tokenizer.convert_tokens_to_string(
|
| 170 |
+
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
|
| 171 |
+
if answer == tokenizer.bos_token:
|
| 172 |
+
answer = ''
|
| 173 |
+
else:
|
| 174 |
+
answer = ''
|
| 175 |
+
|
| 176 |
+
score_start = torch.max(torch.softmax(start_logit, dim=-1)).cpu().detach().numpy().tolist()
|
| 177 |
+
score_end = torch.max(torch.softmax(end_logit, dim=-1)).cpu().detach().numpy().tolist()
|
| 178 |
+
plain_result.append({
|
| 179 |
+
"answer": answer,
|
| 180 |
+
"score_start": score_start,
|
| 181 |
+
"score_end": score_end
|
| 182 |
+
})
|
| 183 |
+
return plain_result
|
| 184 |
+
|
| 185 |
+
st.title("Chatbot Interface")
|
| 186 |
+
st.write("Hi! I am your virtual assistant. Feel free to ask, and I'll do my best to provide you with answers and assistance.")
|
| 187 |
+
text = st.text_input("User: ")
|
| 188 |
+
|
| 189 |
+
if st.button("Submit"):
|
| 190 |
+
if text:
|
| 191 |
+
result = chatRoberta(text)
|
| 192 |
+
st.write(f"Chatbot: {result}")
|
| 193 |
+
else:
|
| 194 |
+
st.write("Please enter a message.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|