Spaces:
Paused
Paused
File size: 10,720 Bytes
451f190 b1e622d 5ecf156 451f190 d727a1f 451f190 fd1a131 451f190 d727a1f 451f190 2e463ab 451f190 0e8f6fd 451f190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import nltk
from transformers.models.roberta.modeling_roberta import *
from transformers import RobertaForQuestionAnswering
from nltk import word_tokenize
import json
import pandas as pd
import re
image_url = "logo.png"
# Hiển thị hình ảnh
st.image(image_url, caption='Hình ảnh từ URL', use_column_width=True)
# Download punkt for nltk
nltk.download('punkt')
# Load PhoBert model and tokenizer
phoBert_model = AutoModelForSequenceClassification.from_pretrained('minhdang14902/PhoBert_Edu')
phoBert_tokenizer = AutoTokenizer.from_pretrained('minhdang14902/PhoBert_Edu')
chatbot_pipeline = pipeline("sentiment-analysis", model=phoBert_model, tokenizer=phoBert_tokenizer)
# Load spaCy Vietnamese model
# nlp = spacy.load('vi_core_news_lg')
# Load intents from json file
def load_json_file(filename):
with open(filename) as f:
file = json.load(f)
return file
filename = './QA_Legal_converted_merged.json'
intents = load_json_file(filename)
def create_df():
df = pd.DataFrame({
'Pattern': [],
'Tag': []
})
return df
df = create_df()
def extract_json_info(json_file, df):
for intent in json_file['intents']:
for pattern in intent['patterns']:
sentence_tag = [pattern, intent['tag']]
df.loc[len(df.index)] = sentence_tag
return df
df = extract_json_info(intents, df)
df2 = df.copy()
labels = df2['Tag'].unique().tolist()
labels = [s.strip() for s in labels]
num_labels = len(labels)
id2label = {id: label for id, label in enumerate(labels)}
label2id = {label: id for id, label in enumerate(labels)}
# def tokenize_with_spacy(text):
# doc = nlp(text)
# tokens = [token.text for token in doc]
# tokenized_text = ' '.join(tokens)
# tokenized_text = re.sub(r'(?<!\s)([.,?])', r' \1', tokenized_text)
# tokenized_text = re.sub(r'([.,?])(?!\s)', r'\1 ', tokenized_text)
# return tokenized_text
# Load Roberta model and tokenizer
_CHECKPOINT_FOR_DOC = "roberta-base"
_CONFIG_FOR_DOC = "RobertaConfig"
_TOKENIZER_FOR_DOC = "RobertaTokenizer"
class MRCQuestionAnswering(RobertaPreTrainedModel):
config_class = RobertaConfig
def _reorder_cache(self, past, beam_idx):
pass
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.roberta = RobertaModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
def forward(
self,
input_ids=None,
words_lengths=None,
start_idx=None,
end_idx=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
span_answer_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.roberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=None, # Roberta doesn't use token_type_ids
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
context_embedding = sequence_output
batch_size = input_ids.shape[0]
max_sub_word = input_ids.shape[1]
max_word = words_lengths.shape[1]
align_matrix = torch.zeros((batch_size, max_word, max_sub_word))
for i, sample_length in enumerate(words_lengths):
for j in range(len(sample_length)):
start_idx = torch.sum(sample_length[:j])
align_matrix[i][j][start_idx: start_idx + sample_length[j]] = 1 if sample_length[j] > 0 else 0
align_matrix = align_matrix.to(context_embedding.device)
context_embedding_align = torch.bmm(align_matrix, context_embedding)
logits = self.qa_outputs(context_embedding_align)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
roberta_model_checkpoint = "minhdang14902/Roberta_edu"
roberta_tokenizer = AutoTokenizer.from_pretrained(roberta_model_checkpoint)
roberta_model = MRCQuestionAnswering.from_pretrained(roberta_model_checkpoint)
def chatRoberta(text):
label = label2id[chatbot_pipeline(text)[0]['label']]
response = intents['intents'][label]['responses']
QA_input = {
'question': text,
'context': response[0]
}
# Tokenize input
encoded_input = tokenize_function(QA_input, roberta_tokenizer)
# Prepare batch samples
batch_samples = data_collator([encoded_input], roberta_tokenizer)
# Model prediction
roberta_model.eval()
with torch.no_grad():
inputs = {
'input_ids': batch_samples['input_ids'],
'attention_mask': batch_samples['attention_mask'],
'words_lengths': batch_samples['words_lengths'],
}
outputs = roberta_model(**inputs)
# Extract answer
result = extract_answer([encoded_input], outputs, roberta_tokenizer)
return result
def tokenize_function(example, tokenizer):
question_word = word_tokenize(example["question"])
context_word = word_tokenize(example["context"])
question_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in question_word]
context_sub_words_ids = [tokenizer.convert_tokens_to_ids(tokenizer.tokenize(w)) for w in context_word]
valid = True
if len([j for i in question_sub_words_ids + context_sub_words_ids for j in i]) > tokenizer.model_max_length - 1:
valid = False
question_sub_words_ids = [[tokenizer.bos_token_id]] + question_sub_words_ids + [[tokenizer.eos_token_id]]
context_sub_words_ids = context_sub_words_ids + [[tokenizer.eos_token_id]]
input_ids = [j for i in question_sub_words_ids + context_sub_words_ids for j in i]
if len(input_ids) > tokenizer.model_max_length:
valid = False
words_lengths = [len(item) for item in question_sub_words_ids + context_sub_words_ids]
return {
"input_ids": input_ids,
"words_lengths": words_lengths,
"valid": valid
}
def data_collator(samples, tokenizer):
if len(samples) == 0:
return {}
def collate_tokens(values, pad_idx, eos_idx=None, left_pad=False, move_eos_to_beginning=False):
size = max(v.size(0) for v in values)
res = values[0].new(len(values), size).fill_(pad_idx)
def copy_tensor(src, dst):
assert dst.numel() == src.numel()
if move_eos_to_beginning:
assert src[-1] == eos_idx
dst[0] = eos_idx
dst[1:] = src[:-1]
else:
dst.copy_(src)
for i, v in enumerate(values):
copy_tensor(v, res[i][size - len(v):] if left_pad else res[i][:len(v)])
return res
input_ids = collate_tokens([torch.tensor(item['input_ids']) for item in samples], pad_idx=tokenizer.pad_token_id)
attention_mask = torch.zeros_like(input_ids)
for i in range(len(samples)):
attention_mask[i][:len(samples[i]['input_ids'])] = 1
words_lengths = collate_tokens([torch.tensor(item['words_lengths']) for item in samples], pad_idx=0)
batch_samples = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'words_lengths': words_lengths,
}
return batch_samples
def extract_answer(inputs, outputs, tokenizer):
plain_result = []
for sample_input, start_logit, end_logit in zip(inputs, outputs.start_logits, outputs.end_logits):
sample_words_length = sample_input['words_lengths']
input_ids = sample_input['input_ids']
answer_start = sum(sample_words_length[:torch.argmax(start_logit)])
answer_end = sum(sample_words_length[:torch.argmax(end_logit) + 1])
if answer_start <= answer_end:
answer = tokenizer.convert_tokens_to_string(
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
if answer == tokenizer.bos_token:
answer = ''
else:
answer = ''
score_start = torch.max(torch.softmax(start_logit, dim=-1)).cpu().detach().numpy().tolist()
score_end = torch.max(torch.softmax(end_logit, dim=-1)).cpu().detach().numpy().tolist()
plain_result.append({
"answer": answer,
"score_start": score_start,
"score_end": score_end
})
return plain_result
st.title("Chatbot Interface")
st.write("Hi! I am your virtual assistant. Feel free to ask, and I'll do my best to provide you with answers and assistance.")
text = st.text_input("User: ")
if st.button("Submit"):
if text:
result = chatRoberta(text)
st.write(f"Chatbot: {result[0]['answer']}")
else:
st.write("Please enter a message.")
|