File size: 37,134 Bytes
1875ee2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
import gradio as gr
import yaml
import os
import shutil
from functools import lru_cache
from core.settings import *
from utils.app_utils import *
from core.generation_logic import *
from comfy_integration.nodes import SAMPLER_CHOICES, SCHEDULER_CHOICES

from core.pipelines.controlnet_preprocessor import CPU_ONLY_PREPROCESSORS
from utils.app_utils import PREPROCESSOR_MODEL_MAP, PREPROCESSOR_PARAMETER_MAP, save_uploaded_file_with_hash
from ui.shared.ui_components import RESOLUTION_MAP, MAX_CONTROLNETS, MAX_IPADAPTERS, MAX_EMBEDDINGS, MAX_CONDITIONINGS, MAX_LORAS


@lru_cache(maxsize=1)
def load_controlnet_config():
    _PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    _CN_MODEL_LIST_PATH = os.path.join(_PROJECT_ROOT, 'yaml', 'controlnet_models.yaml')
    try:
        print("--- Loading controlnet_models.yaml ---")
        with open(_CN_MODEL_LIST_PATH, 'r', encoding='utf-8') as f:
            config = yaml.safe_load(f)
        print("--- ✅ controlnet_models.yaml loaded successfully ---")
        return config.get("ControlNet", {}).get("SDXL", [])
    except Exception as e:
        print(f"Error loading controlnet_models.yaml: {e}")
        return []

@lru_cache(maxsize=1)
def load_ipadapter_config():
    _PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
    _IPA_MODEL_LIST_PATH = os.path.join(_PROJECT_ROOT, 'yaml', 'ipadapter.yaml')
    try:
        print("--- Loading ipadapter.yaml ---")
        with open(_IPA_MODEL_LIST_PATH, 'r', encoding='utf-8') as f:
            config = yaml.safe_load(f)
        print("--- ✅ ipadapter.yaml loaded successfully ---")
        return config
    except Exception as e:
        print(f"Error loading ipadapter.yaml: {e}")
        return {}


def apply_data_to_ui(data, prefix, ui_components):
    final_sampler = data.get('sampler') if data.get('sampler') in SAMPLER_CHOICES else SAMPLER_CHOICES[0]
    default_scheduler = 'normal' if 'normal' in SCHEDULER_CHOICES else SCHEDULER_CHOICES[0]
    final_scheduler = data.get('scheduler') if data.get('scheduler') in SCHEDULER_CHOICES else default_scheduler

    updates = {}
    base_model_name = data.get('base_model')
    
    model_map = MODEL_MAP_CHECKPOINT

    if f'base_model_{prefix}' in ui_components:
        model_dropdown_component = ui_components[f'base_model_{prefix}']
        if base_model_name and base_model_name in model_map:
            updates[model_dropdown_component] = base_model_name
        else:
            updates[model_dropdown_component] = gr.update()
    
    common_params = {
        f'prompt_{prefix}': data.get('prompt', ''),
        f'neg_prompt_{prefix}': data.get('negative_prompt', ''),
        f'seed_{prefix}': data.get('seed', -1),
        f'cfg_{prefix}': data.get('cfg_scale', 7.5),
        f'steps_{prefix}': data.get('steps', 28),
        f'sampler_{prefix}': final_sampler,
        f'scheduler_{prefix}': final_scheduler,
    }
    
    for comp_name, value in common_params.items():
        if comp_name in ui_components:
            updates[ui_components[comp_name]] = value
    
    if prefix == 'txt2img':
         if f'width_{prefix}' in ui_components:
             updates[ui_components[f'width_{prefix}']] = data.get('width', 1024)
         if f'height_{prefix}' in ui_components:
             updates[ui_components[f'height_{prefix}']] = data.get('height', 1024)

    tab_indices = {"txt2img": 0, "img2img": 1, "inpaint": 2, "outpaint": 3, "hires_fix": 4}
    tab_index = tab_indices.get(prefix, 0)

    updates[ui_components['tabs']] = gr.Tabs(selected=0)
    updates[ui_components['image_gen_tabs']] = gr.Tabs(selected=tab_index)
    
    return updates


def send_info_to_tab(image, prefix, ui_components):
    if not image or not image.info.get('parameters', ''):
        all_comps = [comp for comp_or_list in ui_components.values() for comp in (comp_or_list if isinstance(comp_or_list, list) else [comp_or_list])]
        return {comp: gr.update() for comp in all_comps}
    
    data = parse_parameters(image.info['parameters'])
    
    image_input_map = {
        "img2img": 'input_image_img2img',
        "inpaint": 'input_image_dict_inpaint',
        "outpaint": 'input_image_outpaint',
        "hires_fix": 'input_image_hires_fix'
    }
    
    updates = apply_data_to_ui(data, prefix, ui_components)
    
    if prefix in image_input_map and image_input_map[prefix] in ui_components:
        component_key = image_input_map[prefix]
        updates[ui_components[component_key]] = gr.update(value=image)
        
    return updates


def send_info_by_hash(image, ui_components):
    if not image or not image.info.get('parameters', ''):
        all_comps = [comp for comp_or_list in ui_components.values() for comp in (comp_or_list if isinstance(comp_or_list, list) else [comp_or_list])]
        return {comp: gr.update() for comp in all_comps}

    data = parse_parameters(image.info['parameters'])
    
    return apply_data_to_ui(data, "txt2img", ui_components)


def attach_event_handlers(ui_components, demo):
    def update_cn_input_visibility(choice):
        return {
            ui_components["cn_image_input"]: gr.update(visible=choice == "Image"),
            ui_components["cn_video_input"]: gr.update(visible=choice == "Video")
        }
    ui_components["cn_input_type"].change(
        fn=update_cn_input_visibility,
        inputs=[ui_components["cn_input_type"]],
        outputs=[ui_components["cn_image_input"], ui_components["cn_video_input"]]
    )
    
    def update_preprocessor_models_dropdown(preprocessor_name):
        models = PREPROCESSOR_MODEL_MAP.get(preprocessor_name)
        if models:
            model_filenames = [m[1] for m in models]
            return gr.update(choices=model_filenames, value=model_filenames[0], visible=True)
        else:
            return gr.update(choices=[], value=None, visible=False)

    def update_preprocessor_settings_ui(preprocessor_name):
        from ui.layout import MAX_DYNAMIC_CONTROLS
        params = PREPROCESSOR_PARAMETER_MAP.get(preprocessor_name, [])
        
        slider_updates, dropdown_updates, checkbox_updates = [], [], []
        
        s_idx, d_idx, c_idx = 0, 0, 0

        for param in params:
            if s_idx + d_idx + c_idx >= MAX_DYNAMIC_CONTROLS: break
            
            name = param["name"]
            ptype = param["type"]
            config = param["config"]
            label = name.replace('_', ' ').title()

            if ptype == "INT" or ptype == "FLOAT":
                if s_idx < MAX_DYNAMIC_CONTROLS:
                    slider_updates.append(gr.update(
                        label=label,
                        minimum=config.get('min', 0),
                        maximum=config.get('max', 255),
                        step=config.get('step', 0.1 if ptype == "FLOAT" else 1),
                        value=config.get('default', 0),
                        visible=True
                    ))
                    s_idx += 1
            elif isinstance(ptype, list):
                if d_idx < MAX_DYNAMIC_CONTROLS:
                    dropdown_updates.append(gr.update(
                        label=label,
                        choices=ptype,
                        value=config.get('default', ptype[0] if ptype else None),
                        visible=True
                    ))
                    d_idx += 1
            elif ptype == "BOOLEAN":
                if c_idx < MAX_DYNAMIC_CONTROLS:
                    checkbox_updates.append(gr.update(
                        label=label,
                        value=config.get('default', False),
                        visible=True
                    ))
                    c_idx += 1

        for _ in range(s_idx, MAX_DYNAMIC_CONTROLS): slider_updates.append(gr.update(visible=False))
        for _ in range(d_idx, MAX_DYNAMIC_CONTROLS): dropdown_updates.append(gr.update(visible=False))
        for _ in range(c_idx, MAX_DYNAMIC_CONTROLS): checkbox_updates.append(gr.update(visible=False))

        return slider_updates + dropdown_updates + checkbox_updates

    def update_run_button_for_cpu(preprocessor_name):
        if preprocessor_name in CPU_ONLY_PREPROCESSORS:
            return gr.update(value="Run Preprocessor CPU Only", variant="primary"), gr.update(visible=False)
        else:
            return gr.update(value="Run Preprocessor", variant="primary"), gr.update(visible=True)

    ui_components["preprocessor_cn"].change(
        fn=update_preprocessor_models_dropdown,
        inputs=[ui_components["preprocessor_cn"]],
        outputs=[ui_components["preprocessor_model_cn"]]
    ).then(
        fn=update_preprocessor_settings_ui,
        inputs=[ui_components["preprocessor_cn"]],
        outputs=ui_components["cn_sliders"] + ui_components["cn_dropdowns"] + ui_components["cn_checkboxes"]
    ).then(
        fn=update_run_button_for_cpu,
        inputs=[ui_components["preprocessor_cn"]],
        outputs=[ui_components["run_cn"], ui_components["zero_gpu_cn"]]
    )

    all_dynamic_inputs = (
        ui_components["cn_sliders"] + 
        ui_components["cn_dropdowns"] + 
        ui_components["cn_checkboxes"]
    )

    ui_components["run_cn"].click(
        fn=run_cn_preprocessor_entry,
        inputs=[
            ui_components["cn_input_type"],
            ui_components["cn_image_input"],
            ui_components["cn_video_input"],
            ui_components["preprocessor_cn"],
            ui_components["preprocessor_model_cn"],
            ui_components["zero_gpu_cn"],
        ] + all_dynamic_inputs,
        outputs=[ui_components["output_gallery_cn"]]
    )
    
    def create_lora_event_handlers(prefix):
        lora_rows = ui_components[f'lora_rows_{prefix}']
        lora_ids = ui_components[f'lora_ids_{prefix}']
        lora_scales = ui_components[f'lora_scales_{prefix}']
        lora_uploads = ui_components[f'lora_uploads_{prefix}']
        count_state = ui_components[f'lora_count_state_{prefix}']
        add_button = ui_components[f'add_lora_button_{prefix}']
        del_button = ui_components[f'delete_lora_button_{prefix}']

        def add_lora_row(c):
            updates = {}
            if c < MAX_LORAS:
                c += 1
                updates[lora_rows[c - 1]] = gr.update(visible=True)
            
            updates[count_state] = c
            updates[add_button] = gr.update(visible=c < MAX_LORAS)
            updates[del_button] = gr.update(visible=c > 1)
            return updates

        def del_lora_row(c):
            updates = {}
            if c > 1:
                updates[lora_rows[c - 1]] = gr.update(visible=False)
                updates[lora_ids[c - 1]] = ""
                updates[lora_scales[c - 1]] = 0.0
                updates[lora_uploads[c - 1]] = None
                c -= 1

            updates[count_state] = c
            updates[add_button] = gr.update(visible=True)
            updates[del_button] = gr.update(visible=c > 1)
            return updates
        
        add_outputs = [count_state, add_button, del_button] + lora_rows
        del_outputs = [count_state, add_button, del_button] + lora_rows + lora_ids + lora_scales + lora_uploads

        add_button.click(add_lora_row, [count_state], add_outputs, show_progress=False)
        del_button.click(del_lora_row, [count_state], del_outputs, show_progress=False)
        
    def create_controlnet_event_handlers(prefix):
        cn_rows = ui_components[f'controlnet_rows_{prefix}']
        cn_types = ui_components[f'controlnet_types_{prefix}']
        cn_series = ui_components[f'controlnet_series_{prefix}']
        cn_filepaths = ui_components[f'controlnet_filepaths_{prefix}']
        cn_images = ui_components[f'controlnet_images_{prefix}']
        cn_strengths = ui_components[f'controlnet_strengths_{prefix}']
        
        count_state = ui_components[f'controlnet_count_state_{prefix}']
        add_button = ui_components[f'add_controlnet_button_{prefix}']
        del_button = ui_components[f'delete_controlnet_button_{prefix}']
        accordion = ui_components[f'controlnet_accordion_{prefix}']

        def add_cn_row(c):
            c += 1
            updates = {
                count_state: c,
                cn_rows[c-1]: gr.update(visible=True),
                add_button: gr.update(visible=c < MAX_CONTROLNETS),
                del_button: gr.update(visible=True)
            }
            return updates

        def del_cn_row(c):
            c -= 1
            updates = {
                count_state: c,
                cn_rows[c]: gr.update(visible=False),
                cn_images[c]: None,
                cn_strengths[c]: 1.0,
                add_button: gr.update(visible=True),
                del_button: gr.update(visible=c > 0)
            }
            return updates
            
        add_outputs = [count_state, add_button, del_button] + cn_rows
        del_outputs = [count_state, add_button, del_button] + cn_rows + cn_images + cn_strengths
        add_button.click(fn=add_cn_row, inputs=[count_state], outputs=add_outputs, show_progress=False)
        del_button.click(fn=del_cn_row, inputs=[count_state], outputs=del_outputs, show_progress=False)
        
        def on_cn_type_change(selected_type):
            cn_config = load_controlnet_config()
            series_choices = []
            if selected_type:
                series_choices = sorted(list(set(
                    model.get("Series", "Default") for model in cn_config
                    if selected_type in model.get("Type", [])
                )))
            default_series = series_choices[0] if series_choices else None
            filepath = "None"
            if default_series:
                for model in cn_config:
                    if model.get("Series") == default_series and selected_type in model.get("Type", []):
                        filepath = model.get("Filepath")
                        break
            return gr.update(choices=series_choices, value=default_series), filepath

        def on_cn_series_change(selected_series, selected_type):
            cn_config = load_controlnet_config()
            filepath = "None"
            if selected_series and selected_type:
                for model in cn_config:
                    if model.get("Series") == selected_series and selected_type in model.get("Type", []):
                        filepath = model.get("Filepath")
                        break
            return filepath
            
        for i in range(MAX_CONTROLNETS):
            cn_types[i].change(
                fn=on_cn_type_change,
                inputs=[cn_types[i]],
                outputs=[cn_series[i], cn_filepaths[i]],
                show_progress=False
            )
            cn_series[i].change(
                fn=on_cn_series_change,
                inputs=[cn_series[i], cn_types[i]],
                outputs=[cn_filepaths[i]],
                show_progress=False
            )

        def on_accordion_expand(*images):
            return [gr.update() for _ in images]
        
        accordion.expand(
            fn=on_accordion_expand,
            inputs=cn_images,
            outputs=cn_images,
            show_progress=False
        )

    def create_ipadapter_event_handlers(prefix):
        ipa_rows = ui_components[f'ipadapter_rows_{prefix}']
        ipa_lora_strengths = ui_components[f'ipadapter_lora_strengths_{prefix}']
        ipa_final_preset = ui_components[f'ipadapter_final_preset_{prefix}']
        ipa_final_lora_strength = ui_components[f'ipadapter_final_lora_strength_{prefix}']
        count_state = ui_components[f'ipadapter_count_state_{prefix}']
        add_button = ui_components[f'add_ipadapter_button_{prefix}']
        del_button = ui_components[f'delete_ipadapter_button_{prefix}']
        accordion = ui_components[f'ipadapter_accordion_{prefix}']

        def add_ipa_row(c):
            c += 1
            return {
                count_state: c,
                ipa_rows[c - 1]: gr.update(visible=True),
                add_button: gr.update(visible=c < MAX_IPADAPTERS),
                del_button: gr.update(visible=True),
            }

        def del_ipa_row(c):
            c -= 1
            return {
                count_state: c,
                ipa_rows[c]: gr.update(visible=False),
                add_button: gr.update(visible=True),
                del_button: gr.update(visible=c > 0),
            }

        add_outputs = [count_state, add_button, del_button] + ipa_rows
        del_outputs = [count_state, add_button, del_button] + ipa_rows
        add_button.click(fn=add_ipa_row, inputs=[count_state], outputs=add_outputs, show_progress=False)
        del_button.click(fn=del_ipa_row, inputs=[count_state], outputs=del_outputs, show_progress=False)

        def on_preset_change(preset_value):
            config = load_ipadapter_config()
            faceid_presets = []
            if isinstance(config, list):
                faceid_presets = [
                    p.get('preset_name', '') for p in config 
                    if 'FACE' in p.get('preset_name', '') or 'FACEID' in p.get('preset_name', '')
                ]
            is_visible = preset_value in faceid_presets
            updates = [gr.update(visible=is_visible)] * (MAX_IPADAPTERS + 1)
            return updates

        all_lora_strength_sliders = [ipa_final_lora_strength] + ipa_lora_strengths
        ipa_final_preset.change(fn=on_preset_change, inputs=[ipa_final_preset], outputs=all_lora_strength_sliders, show_progress=False)
        
        accordion.expand(fn=lambda *imgs: [gr.update() for _ in imgs], inputs=ui_components[f'ipadapter_images_{prefix}'], outputs=ui_components[f'ipadapter_images_{prefix}'], show_progress=False)


    def create_embedding_event_handlers(prefix):
        rows = ui_components[f'embedding_rows_{prefix}']
        ids = ui_components[f'embeddings_ids_{prefix}']
        files = ui_components[f'embeddings_files_{prefix}']
        count_state = ui_components[f'embedding_count_state_{prefix}']
        add_button = ui_components[f'add_embedding_button_{prefix}']
        del_button = ui_components[f'delete_embedding_button_{prefix}']

        def add_row(c):
            c += 1
            return {
                count_state: c,
                rows[c - 1]: gr.update(visible=True),
                add_button: gr.update(visible=c < MAX_EMBEDDINGS),
                del_button: gr.update(visible=True)
            }

        def del_row(c):
            c -= 1
            return {
                count_state: c,
                rows[c]: gr.update(visible=False),
                ids[c]: "",
                files[c]: None,
                add_button: gr.update(visible=True),
                del_button: gr.update(visible=c > 0)
            }
        
        add_outputs = [count_state, add_button, del_button] + rows
        del_outputs = [count_state, add_button, del_button] + rows + ids + files
        add_button.click(fn=add_row, inputs=[count_state], outputs=add_outputs, show_progress=False)
        del_button.click(fn=del_row, inputs=[count_state], outputs=del_outputs, show_progress=False)
    
    def create_conditioning_event_handlers(prefix):
        rows = ui_components[f'conditioning_rows_{prefix}']
        prompts = ui_components[f'conditioning_prompts_{prefix}']
        count_state = ui_components[f'conditioning_count_state_{prefix}']
        add_button = ui_components[f'add_conditioning_button_{prefix}']
        del_button = ui_components[f'delete_conditioning_button_{prefix}']
        
        def add_row(c):
            c += 1
            return {
                count_state: c,
                rows[c - 1]: gr.update(visible=True),
                add_button: gr.update(visible=c < MAX_CONDITIONINGS),
                del_button: gr.update(visible=True),
            }

        def del_row(c):
            c -= 1
            return {
                count_state: c,
                rows[c]: gr.update(visible=False),
                prompts[c]: "",
                add_button: gr.update(visible=True),
                del_button: gr.update(visible=c > 0),
            }

        add_outputs = [count_state, add_button, del_button] + rows
        del_outputs = [count_state, add_button, del_button] + rows + prompts
        add_button.click(fn=add_row, inputs=[count_state], outputs=add_outputs, show_progress=False)
        del_button.click(fn=del_row, inputs=[count_state], outputs=del_outputs, show_progress=False)
    
    def on_vae_upload(file_obj):
        if not file_obj:
            return gr.update(), gr.update(), None
        
        hashed_filename = save_uploaded_file_with_hash(file_obj, VAE_DIR)
        return hashed_filename, "File", file_obj
    
    def on_lora_upload(file_obj):
        if not file_obj:
            return gr.update(), gr.update()
        
        hashed_filename = save_uploaded_file_with_hash(file_obj, LORA_DIR)
        return hashed_filename, "File"

    def on_embedding_upload(file_obj):
        if not file_obj:
            return gr.update(), gr.update(), None
        
        hashed_filename = save_uploaded_file_with_hash(file_obj, EMBEDDING_DIR)
        return hashed_filename, "File", file_obj


    def create_run_event(prefix: str, task_type: str):
        run_inputs_map = {
            'model_display_name': ui_components[f'base_model_{prefix}'],
            'positive_prompt': ui_components[f'prompt_{prefix}'],
            'negative_prompt': ui_components[f'neg_prompt_{prefix}'],
            'seed': ui_components[f'seed_{prefix}'],
            'batch_size': ui_components[f'batch_size_{prefix}'],
            'guidance_scale': ui_components[f'cfg_{prefix}'],
            'num_inference_steps': ui_components[f'steps_{prefix}'],
            'sampler': ui_components[f'sampler_{prefix}'],
            'scheduler': ui_components[f'scheduler_{prefix}'],
            'zero_gpu_duration': ui_components[f'zero_gpu_{prefix}'],
            'civitai_api_key': ui_components.get(f'civitai_api_key_{prefix}'),
            'clip_skip': ui_components[f'clip_skip_{prefix}'],
            'task_type': gr.State(task_type)
        }
        
        if task_type not in ['img2img', 'inpaint']:
            run_inputs_map.update({'width': ui_components[f'width_{prefix}'], 'height': ui_components[f'height_{prefix}']})
        
        task_specific_map = {
            'img2img': {'img2img_image': f'input_image_{prefix}', 'img2img_denoise': f'denoise_{prefix}'},
            'inpaint': {'inpaint_image_dict': f'input_image_dict_{prefix}'},
            'outpaint': {'outpaint_image': f'input_image_{prefix}', 'outpaint_left': f'outpaint_left_{prefix}', 'outpaint_top': f'outpaint_top_{prefix}', 'outpaint_right': f'outpaint_right_{prefix}', 'outpaint_bottom': f'outpaint_bottom_{prefix}'},
            'hires_fix': {'hires_image': f'input_image_{prefix}', 'hires_upscaler': f'hires_upscaler_{prefix}', 'hires_scale_by': f'hires_scale_by_{prefix}', 'hires_denoise': f'denoise_{prefix}'}
        }
        if task_type in task_specific_map:
            for key, comp_name in task_specific_map[task_type].items():
                run_inputs_map[key] = ui_components[comp_name]
        
        lora_data_components = ui_components.get(f'all_lora_components_flat_{prefix}', [])
        controlnet_data_components = ui_components.get(f'all_controlnet_components_flat_{prefix}', [])
        ipadapter_data_components = ui_components.get(f'all_ipadapter_components_flat_{prefix}', [])
        embedding_data_components = ui_components.get(f'all_embedding_components_flat_{prefix}', [])
        conditioning_data_components = ui_components.get(f'all_conditioning_components_flat_{prefix}', [])
        
        run_inputs_map['vae_source'] = ui_components.get(f'vae_source_{prefix}')
        run_inputs_map['vae_id'] = ui_components.get(f'vae_id_{prefix}')
        run_inputs_map['vae_file'] = ui_components.get(f'vae_file_{prefix}')

        input_keys = list(run_inputs_map.keys())
        input_list_flat = [v for v in run_inputs_map.values() if v is not None]
        input_list_flat += lora_data_components + controlnet_data_components + ipadapter_data_components + embedding_data_components + conditioning_data_components

        def create_ui_inputs_dict(*args):
            valid_keys = [k for k in input_keys if run_inputs_map[k] is not None]
            ui_dict = dict(zip(valid_keys, args[:len(valid_keys)]))
            arg_idx = len(valid_keys)
            
            ui_dict['lora_data'] = list(args[arg_idx : arg_idx + len(lora_data_components)])
            arg_idx += len(lora_data_components)
            ui_dict['controlnet_data'] = list(args[arg_idx : arg_idx + len(controlnet_data_components)])
            arg_idx += len(controlnet_data_components)
            ui_dict['ipadapter_data'] = list(args[arg_idx : arg_idx + len(ipadapter_data_components)])
            arg_idx += len(ipadapter_data_components)
            ui_dict['embedding_data'] = list(args[arg_idx : arg_idx + len(embedding_data_components)])
            arg_idx += len(embedding_data_components)
            ui_dict['conditioning_data'] = list(args[arg_idx : arg_idx + len(conditioning_data_components)])

            return ui_dict

        ui_components[f'run_{prefix}'].click(
            fn=lambda *args, progress=gr.Progress(track_tqdm=True): generate_image_wrapper(create_ui_inputs_dict(*args), progress),
            inputs=input_list_flat,
            outputs=[ui_components[f'result_{prefix}']]
        )


    for prefix, task_type in [
        ("txt2img", "txt2img"), ("img2img", "img2img"), ("inpaint", "inpaint"),
        ("outpaint", "outpaint"), ("hires_fix", "hires_fix"),
    ]:
        if f'add_lora_button_{prefix}' in ui_components: 
            create_lora_event_handlers(prefix)
            lora_uploads = ui_components[f'lora_uploads_{prefix}']
            lora_ids = ui_components[f'lora_ids_{prefix}']
            lora_sources = ui_components[f'lora_sources_{prefix}']
            for i in range(MAX_LORAS):
                lora_uploads[i].upload(
                    fn=on_lora_upload,
                    inputs=[lora_uploads[i]],
                    outputs=[lora_ids[i], lora_sources[i]],
                    show_progress=False
                )
        if f'add_controlnet_button_{prefix}' in ui_components: create_controlnet_event_handlers(prefix)
        if f'add_ipadapter_button_{prefix}' in ui_components: create_ipadapter_event_handlers(prefix)
        if f'add_embedding_button_{prefix}' in ui_components: 
            create_embedding_event_handlers(prefix)
            if f'embeddings_uploads_{prefix}' in ui_components:
                emb_uploads = ui_components[f'embeddings_uploads_{prefix}']
                emb_ids = ui_components[f'embeddings_ids_{prefix}']
                emb_sources = ui_components[f'embeddings_sources_{prefix}']
                emb_files = ui_components[f'embeddings_files_{prefix}']
                for i in range(MAX_EMBEDDINGS):
                    emb_uploads[i].upload(
                        fn=on_embedding_upload,
                        inputs=[emb_uploads[i]],
                        outputs=[emb_ids[i], emb_sources[i], emb_files[i]],
                        show_progress=False
                    )
        if f'add_conditioning_button_{prefix}' in ui_components: create_conditioning_event_handlers(prefix)
        if f'vae_source_{prefix}' in ui_components:
            upload_button = ui_components.get(f'vae_upload_button_{prefix}')
            if upload_button:
                 upload_button.upload(
                    fn=on_vae_upload, 
                    inputs=[upload_button], 
                    outputs=[
                        ui_components[f'vae_id_{prefix}'], 
                        ui_components[f'vae_source_{prefix}'], 
                        ui_components[f'vae_file_{prefix}']
                    ]
                )

        create_run_event(prefix, task_type)


    ui_components["info_get_button"].click(
        get_png_info, 
        [ui_components["info_image_input"]], 
        [ui_components["info_prompt_output"], ui_components["info_neg_prompt_output"], ui_components["info_params_output"]]
    )

    flat_ui_list = [comp for comp_or_list in ui_components.values() for comp in (comp_or_list if isinstance(comp_or_list, list) else [comp_or_list])]
            
    ui_components["send_to_txt2img_button"].click(lambda img: send_info_by_hash(img, ui_components), [ui_components["info_image_input"]], flat_ui_list)
    ui_components["send_to_img2img_button"].click(lambda img: send_info_to_tab(img, "img2img", ui_components), [ui_components["info_image_input"]], flat_ui_list)
    ui_components["send_to_inpaint_button"].click(lambda img: send_info_to_tab(img, "inpaint", ui_components), [ui_components["info_image_input"]], flat_ui_list)
    ui_components["send_to_outpaint_button"].click(lambda img: send_info_to_tab(img, "outpaint", ui_components), [ui_components["info_image_input"]], flat_ui_list)
    ui_components["send_to_hires_fix_button"].click(lambda img: send_info_to_tab(img, "hires_fix", ui_components), [ui_components["info_image_input"]], flat_ui_list)

    def on_aspect_ratio_change(ratio_key, model_display_name):
        model_type = MODEL_TYPE_MAP.get(model_display_name, 'sdxl').lower()
        res_map = RESOLUTION_MAP.get(model_type, RESOLUTION_MAP.get("sdxl", {}))
        w, h = res_map.get(ratio_key, (1024, 1024))
        return w, h

    for prefix in ["txt2img", "img2img", "inpaint", "outpaint", "hires_fix"]:
        if f'aspect_ratio_{prefix}' in ui_components:
            aspect_ratio_dropdown = ui_components[f'aspect_ratio_{prefix}']
            width_component = ui_components[f'width_{prefix}']
            height_component = ui_components[f'height_{prefix}']
            model_dropdown = ui_components[f'base_model_{prefix}']
            aspect_ratio_dropdown.change(fn=on_aspect_ratio_change, inputs=[aspect_ratio_dropdown, model_dropdown], outputs=[width_component, height_component], show_progress=False)
            
    if 'view_mode_inpaint' in ui_components:
        def toggle_inpaint_fullscreen_view(view_mode):
            is_fullscreen = (view_mode == "Fullscreen View")
            other_elements_visible = not is_fullscreen
            editor_height = 800 if is_fullscreen else 272
            return {
                ui_components['model_and_run_row_inpaint']: gr.update(visible=other_elements_visible),
                ui_components['prompts_column_inpaint']: gr.update(visible=other_elements_visible),
                ui_components['params_and_gallery_row_inpaint']: gr.update(visible=other_elements_visible),
                ui_components['accordion_wrapper_inpaint']: gr.update(visible=other_elements_visible),
                ui_components['input_image_dict_inpaint']: gr.update(height=editor_height),
            }
        
        output_components = [
            ui_components['model_and_run_row_inpaint'], ui_components['prompts_column_inpaint'],
            ui_components['params_and_gallery_row_inpaint'], ui_components['accordion_wrapper_inpaint'],
            ui_components['input_image_dict_inpaint']
        ]
        ui_components['view_mode_inpaint'].change(fn=toggle_inpaint_fullscreen_view, inputs=[ui_components['view_mode_inpaint']], outputs=output_components, show_progress=False)

    def initialize_all_cn_dropdowns():
        cn_config = load_controlnet_config()
        if not cn_config: return {}

        all_types = sorted(list(set(t for model in cn_config for t in model.get("Type", []))))
        default_type = all_types[0] if all_types else None
        
        series_choices = []
        if default_type:
            series_choices = sorted(list(set(model.get("Series", "Default") for model in cn_config if default_type in model.get("Type", []))))
        default_series = series_choices[0] if series_choices else None
        
        filepath = "None"
        if default_series and default_type:
            for model in cn_config:
                if model.get("Series") == default_series and default_type in model.get("Type", []):
                    filepath = model.get("Filepath")
                    break

        updates = {}
        for prefix in ["txt2img", "img2img", "inpaint", "outpaint", "hires_fix"]:
            if f'controlnet_types_{prefix}' in ui_components:
                for type_dd in ui_components[f'controlnet_types_{prefix}']:
                    updates[type_dd] = gr.update(choices=all_types, value=default_type)
                for series_dd in ui_components[f'controlnet_series_{prefix}']:
                    updates[series_dd] = gr.update(choices=series_choices, value=default_series)
                for filepath_state in ui_components[f'controlnet_filepaths_{prefix}']:
                    updates[filepath_state] = filepath
        return updates

    def initialize_all_ipa_dropdowns():
        config = load_ipadapter_config()
        if not config or not isinstance(config, list): return {}
        
        unified_presets = []
        faceid_presets = []
        for preset_info in config:
            name = preset_info.get("preset_name")
            if not name:
                continue
            if "FACEID" in name or "FACE" in name:
                faceid_presets.append(name)
            else:
                unified_presets.append(name)
        
        all_presets = unified_presets + faceid_presets
        default_preset = all_presets[0] if all_presets else None
        is_faceid_default = default_preset in faceid_presets

        lora_strength_update = gr.update(visible=is_faceid_default)
        
        updates = {}
        for prefix in ["txt2img", "img2img", "inpaint", "outpaint", "hires_fix"]:
            if f'ipadapter_final_preset_{prefix}' in ui_components:
                for lora_strength_slider in ui_components[f'ipadapter_lora_strengths_{prefix}']:
                    updates[lora_strength_slider] = lora_strength_update
                updates[ui_components[f'ipadapter_final_preset_{prefix}']] = gr.update(choices=all_presets, value=default_preset)
                updates[ui_components[f'ipadapter_final_lora_strength_{prefix}']] = lora_strength_update
        return updates

    def run_on_load():
        cn_updates = initialize_all_cn_dropdowns()
        ipa_updates = initialize_all_ipa_dropdowns()
        
        all_updates = {**cn_updates, **ipa_updates}
        
        default_preprocessor = "Canny Edge" 
        model_update = update_preprocessor_models_dropdown(default_preprocessor)
        all_updates[ui_components["preprocessor_model_cn"]] = model_update
        
        settings_outputs = update_preprocessor_settings_ui(default_preprocessor)
        dynamic_outputs = ui_components["cn_sliders"] + ui_components["cn_dropdowns"] + ui_components["cn_checkboxes"]
        for i, comp in enumerate(dynamic_outputs):
            all_updates[comp] = settings_outputs[i]

        run_button_update, zero_gpu_update = update_run_button_for_cpu(default_preprocessor)
        all_updates[ui_components["run_cn"]] = run_button_update
        all_updates[ui_components["zero_gpu_cn"]] = zero_gpu_update
        
        return all_updates
    
    all_load_outputs = []
    for prefix in ["txt2img", "img2img", "inpaint", "outpaint", "hires_fix"]:
        if f'controlnet_types_{prefix}' in ui_components:
            all_load_outputs.extend(ui_components[f'controlnet_types_{prefix}'])
            all_load_outputs.extend(ui_components[f'controlnet_series_{prefix}'])
            all_load_outputs.extend(ui_components[f'controlnet_filepaths_{prefix}'])
        if f'ipadapter_final_preset_{prefix}' in ui_components:
            all_load_outputs.extend(ui_components[f'ipadapter_lora_strengths_{prefix}'])
            all_load_outputs.append(ui_components[f'ipadapter_final_preset_{prefix}'])
            all_load_outputs.append(ui_components[f'ipadapter_final_lora_strength_{prefix}'])

    all_load_outputs.extend([
        ui_components["preprocessor_model_cn"],
        *ui_components["cn_sliders"],
        *ui_components["cn_dropdowns"],
        *ui_components["cn_checkboxes"],
        ui_components["run_cn"],
        ui_components["zero_gpu_cn"]
    ])
    
    demo.load(
        fn=run_on_load,
        outputs=all_load_outputs
    )