RioShiina commited on
Commit
1875ee2
·
verified ·
1 Parent(s): ed2e2e5

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +0 -26
  2. CODEOWNERS +0 -24
  3. CONTRIBUTING.md +0 -41
  4. LICENSE +0 -674
  5. README.md +1 -1
  6. alembic.ini +0 -84
  7. alembic_db/README.md +0 -4
  8. alembic_db/env.py +0 -64
  9. alembic_db/script.py.mako +0 -28
  10. api_server/routes/internal/README.md +0 -3
  11. api_server/routes/internal/internal_routes.py +0 -73
  12. api_server/services/terminal_service.py +0 -60
  13. api_server/utils/file_operations.py +0 -42
  14. app.py +101 -527
  15. app/app_settings.py +0 -65
  16. app/custom_node_manager.py +0 -145
  17. app/database/db.py +0 -112
  18. app/database/models.py +0 -14
  19. app/frontend_management.py +0 -361
  20. app/logger.py +0 -98
  21. app/model_manager.py +0 -195
  22. app/user_manager.py +0 -438
  23. {api_server → chain_injectors}/__init__.py +0 -0
  24. chain_injectors/conditioning_injector.py +81 -0
  25. chain_injectors/controlnet_injector.py +49 -0
  26. chain_injectors/ipadapter_injector.py +106 -0
  27. comfy/checkpoint_pickle.py +0 -13
  28. comfy/cldm/cldm.py +0 -433
  29. comfy/cldm/control_types.py +0 -10
  30. comfy/cldm/dit_embedder.py +0 -120
  31. comfy/cldm/mmdit.py +0 -81
  32. comfy/cli_args.py +0 -237
  33. comfy/clip_config_bigg.json +0 -23
  34. comfy/clip_model.py +0 -244
  35. comfy/clip_vision.py +0 -148
  36. comfy/clip_vision_config_g.json +0 -18
  37. comfy/clip_vision_config_h.json +0 -18
  38. comfy/clip_vision_config_vitl.json +0 -18
  39. comfy/clip_vision_config_vitl_336.json +0 -18
  40. comfy/clip_vision_config_vitl_336_llava.json +0 -19
  41. comfy/clip_vision_siglip_384.json +0 -13
  42. comfy/clip_vision_siglip_512.json +0 -13
  43. comfy/comfy_types/README.md +0 -43
  44. comfy/comfy_types/__init__.py +0 -46
  45. comfy/comfy_types/examples/example_nodes.py +0 -28
  46. comfy/comfy_types/examples/input_options.png +0 -0
  47. comfy/comfy_types/examples/input_types.png +0 -0
  48. comfy/comfy_types/examples/required_hint.png +0 -0
  49. comfy/comfy_types/node_typing.py +0 -350
  50. comfy/conds.py +0 -137
.gitignore DELETED
@@ -1,26 +0,0 @@
1
- __pycache__/
2
- *.py[cod]
3
- /output/
4
- /input/
5
- !/input/example.png
6
- /models/
7
- /temp/
8
- /custom_nodes/
9
- !custom_nodes/example_node.py.example
10
- extra_model_paths.yaml
11
- /.vs
12
- .vscode/
13
- .idea/
14
- venv/
15
- .venv/
16
- /web/extensions/*
17
- !/web/extensions/logging.js.example
18
- !/web/extensions/core/
19
- /tests-ui/data/object_info.json
20
- /user/
21
- *.log
22
- web_custom_versions/
23
- .DS_Store
24
- openapi.yaml
25
- filtered-openapi.yaml
26
- uv.lock
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CODEOWNERS DELETED
@@ -1,24 +0,0 @@
1
- # Admins
2
- * @comfyanonymous
3
-
4
- # Note: Github teams syntax cannot be used here as the repo is not owned by Comfy-Org.
5
- # Inlined the team members for now.
6
-
7
- # Maintainers
8
- *.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
9
- /tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
10
- /tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
11
- /notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
12
- /script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
13
- /.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
14
- /requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
15
- /pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
16
-
17
- # Python web server
18
- /api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
19
- /app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
20
- /utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
21
-
22
- # Node developers
23
- /comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
24
- /comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONTRIBUTING.md DELETED
@@ -1,41 +0,0 @@
1
- # Contributing to ComfyUI
2
-
3
- Welcome, and thank you for your interest in contributing to ComfyUI!
4
-
5
- There are several ways in which you can contribute, beyond writing code. The goal of this document is to provide a high-level overview of how you can get involved.
6
-
7
- ## Asking Questions
8
-
9
- Have a question? Instead of opening an issue, please ask on [Discord](https://comfy.org/discord) or [Matrix](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) channels. Our team and the community will help you.
10
-
11
- ## Providing Feedback
12
-
13
- Your comments and feedback are welcome, and the development team is available via a handful of different channels.
14
-
15
- See the `#bug-report`, `#feature-request` and `#feedback` channels on Discord.
16
-
17
- ## Reporting Issues
18
-
19
- Have you identified a reproducible problem in ComfyUI? Do you have a feature request? We want to hear about it! Here's how you can report your issue as effectively as possible.
20
-
21
-
22
- ### Look For an Existing Issue
23
-
24
- Before you create a new issue, please do a search in [open issues](https://github.com/comfyanonymous/ComfyUI/issues) to see if the issue or feature request has already been filed.
25
-
26
- If you find your issue already exists, make relevant comments and add your [reaction](https://github.com/blog/2119-add-reactions-to-pull-requests-issues-and-comments). Use a reaction in place of a "+1" comment:
27
-
28
- * 👍 - upvote
29
- * 👎 - downvote
30
-
31
- If you cannot find an existing issue that describes your bug or feature, create a new issue. We have an issue template in place to organize new issues.
32
-
33
-
34
- ### Creating Pull Requests
35
-
36
- * Please refer to the article on [creating pull requests](https://github.com/comfyanonymous/ComfyUI/wiki/How-to-Contribute-Code) and contributing to this project.
37
-
38
-
39
- ## Thank You
40
-
41
- Your contributions to open source, large or small, make great projects like this possible. Thank you for taking the time to contribute.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE DELETED
@@ -1,674 +0,0 @@
1
- GNU GENERAL PUBLIC LICENSE
2
- Version 3, 29 June 2007
3
-
4
- Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
- Everyone is permitted to copy and distribute verbatim copies
6
- of this license document, but changing it is not allowed.
7
-
8
- Preamble
9
-
10
- The GNU General Public License is a free, copyleft license for
11
- software and other kinds of works.
12
-
13
- The licenses for most software and other practical works are designed
14
- to take away your freedom to share and change the works. By contrast,
15
- the GNU General Public License is intended to guarantee your freedom to
16
- share and change all versions of a program--to make sure it remains free
17
- software for all its users. We, the Free Software Foundation, use the
18
- GNU General Public License for most of our software; it applies also to
19
- any other work released this way by its authors. You can apply it to
20
- your programs, too.
21
-
22
- When we speak of free software, we are referring to freedom, not
23
- price. Our General Public Licenses are designed to make sure that you
24
- have the freedom to distribute copies of free software (and charge for
25
- them if you wish), that you receive source code or can get it if you
26
- want it, that you can change the software or use pieces of it in new
27
- free programs, and that you know you can do these things.
28
-
29
- To protect your rights, we need to prevent others from denying you
30
- these rights or asking you to surrender the rights. Therefore, you have
31
- certain responsibilities if you distribute copies of the software, or if
32
- you modify it: responsibilities to respect the freedom of others.
33
-
34
- For example, if you distribute copies of such a program, whether
35
- gratis or for a fee, you must pass on to the recipients the same
36
- freedoms that you received. You must make sure that they, too, receive
37
- or can get the source code. And you must show them these terms so they
38
- know their rights.
39
-
40
- Developers that use the GNU GPL protect your rights with two steps:
41
- (1) assert copyright on the software, and (2) offer you this License
42
- giving you legal permission to copy, distribute and/or modify it.
43
-
44
- For the developers' and authors' protection, the GPL clearly explains
45
- that there is no warranty for this free software. For both users' and
46
- authors' sake, the GPL requires that modified versions be marked as
47
- changed, so that their problems will not be attributed erroneously to
48
- authors of previous versions.
49
-
50
- Some devices are designed to deny users access to install or run
51
- modified versions of the software inside them, although the manufacturer
52
- can do so. This is fundamentally incompatible with the aim of
53
- protecting users' freedom to change the software. The systematic
54
- pattern of such abuse occurs in the area of products for individuals to
55
- use, which is precisely where it is most unacceptable. Therefore, we
56
- have designed this version of the GPL to prohibit the practice for those
57
- products. If such problems arise substantially in other domains, we
58
- stand ready to extend this provision to those domains in future versions
59
- of the GPL, as needed to protect the freedom of users.
60
-
61
- Finally, every program is threatened constantly by software patents.
62
- States should not allow patents to restrict development and use of
63
- software on general-purpose computers, but in those that do, we wish to
64
- avoid the special danger that patents applied to a free program could
65
- make it effectively proprietary. To prevent this, the GPL assures that
66
- patents cannot be used to render the program non-free.
67
-
68
- The precise terms and conditions for copying, distribution and
69
- modification follow.
70
-
71
- TERMS AND CONDITIONS
72
-
73
- 0. Definitions.
74
-
75
- "This License" refers to version 3 of the GNU General Public License.
76
-
77
- "Copyright" also means copyright-like laws that apply to other kinds of
78
- works, such as semiconductor masks.
79
-
80
- "The Program" refers to any copyrightable work licensed under this
81
- License. Each licensee is addressed as "you". "Licensees" and
82
- "recipients" may be individuals or organizations.
83
-
84
- To "modify" a work means to copy from or adapt all or part of the work
85
- in a fashion requiring copyright permission, other than the making of an
86
- exact copy. The resulting work is called a "modified version" of the
87
- earlier work or a work "based on" the earlier work.
88
-
89
- A "covered work" means either the unmodified Program or a work based
90
- on the Program.
91
-
92
- To "propagate" a work means to do anything with it that, without
93
- permission, would make you directly or secondarily liable for
94
- infringement under applicable copyright law, except executing it on a
95
- computer or modifying a private copy. Propagation includes copying,
96
- distribution (with or without modification), making available to the
97
- public, and in some countries other activities as well.
98
-
99
- To "convey" a work means any kind of propagation that enables other
100
- parties to make or receive copies. Mere interaction with a user through
101
- a computer network, with no transfer of a copy, is not conveying.
102
-
103
- An interactive user interface displays "Appropriate Legal Notices"
104
- to the extent that it includes a convenient and prominently visible
105
- feature that (1) displays an appropriate copyright notice, and (2)
106
- tells the user that there is no warranty for the work (except to the
107
- extent that warranties are provided), that licensees may convey the
108
- work under this License, and how to view a copy of this License. If
109
- the interface presents a list of user commands or options, such as a
110
- menu, a prominent item in the list meets this criterion.
111
-
112
- 1. Source Code.
113
-
114
- The "source code" for a work means the preferred form of the work
115
- for making modifications to it. "Object code" means any non-source
116
- form of a work.
117
-
118
- A "Standard Interface" means an interface that either is an official
119
- standard defined by a recognized standards body, or, in the case of
120
- interfaces specified for a particular programming language, one that
121
- is widely used among developers working in that language.
122
-
123
- The "System Libraries" of an executable work include anything, other
124
- than the work as a whole, that (a) is included in the normal form of
125
- packaging a Major Component, but which is not part of that Major
126
- Component, and (b) serves only to enable use of the work with that
127
- Major Component, or to implement a Standard Interface for which an
128
- implementation is available to the public in source code form. A
129
- "Major Component", in this context, means a major essential component
130
- (kernel, window system, and so on) of the specific operating system
131
- (if any) on which the executable work runs, or a compiler used to
132
- produce the work, or an object code interpreter used to run it.
133
-
134
- The "Corresponding Source" for a work in object code form means all
135
- the source code needed to generate, install, and (for an executable
136
- work) run the object code and to modify the work, including scripts to
137
- control those activities. However, it does not include the work's
138
- System Libraries, or general-purpose tools or generally available free
139
- programs which are used unmodified in performing those activities but
140
- which are not part of the work. For example, Corresponding Source
141
- includes interface definition files associated with source files for
142
- the work, and the source code for shared libraries and dynamically
143
- linked subprograms that the work is specifically designed to require,
144
- such as by intimate data communication or control flow between those
145
- subprograms and other parts of the work.
146
-
147
- The Corresponding Source need not include anything that users
148
- can regenerate automatically from other parts of the Corresponding
149
- Source.
150
-
151
- The Corresponding Source for a work in source code form is that
152
- same work.
153
-
154
- 2. Basic Permissions.
155
-
156
- All rights granted under this License are granted for the term of
157
- copyright on the Program, and are irrevocable provided the stated
158
- conditions are met. This License explicitly affirms your unlimited
159
- permission to run the unmodified Program. The output from running a
160
- covered work is covered by this License only if the output, given its
161
- content, constitutes a covered work. This License acknowledges your
162
- rights of fair use or other equivalent, as provided by copyright law.
163
-
164
- You may make, run and propagate covered works that you do not
165
- convey, without conditions so long as your license otherwise remains
166
- in force. You may convey covered works to others for the sole purpose
167
- of having them make modifications exclusively for you, or provide you
168
- with facilities for running those works, provided that you comply with
169
- the terms of this License in conveying all material for which you do
170
- not control copyright. Those thus making or running the covered works
171
- for you must do so exclusively on your behalf, under your direction
172
- and control, on terms that prohibit them from making any copies of
173
- your copyrighted material outside their relationship with you.
174
-
175
- Conveying under any other circumstances is permitted solely under
176
- the conditions stated below. Sublicensing is not allowed; section 10
177
- makes it unnecessary.
178
-
179
- 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
-
181
- No covered work shall be deemed part of an effective technological
182
- measure under any applicable law fulfilling obligations under article
183
- 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
- similar laws prohibiting or restricting circumvention of such
185
- measures.
186
-
187
- When you convey a covered work, you waive any legal power to forbid
188
- circumvention of technological measures to the extent such circumvention
189
- is effected by exercising rights under this License with respect to
190
- the covered work, and you disclaim any intention to limit operation or
191
- modification of the work as a means of enforcing, against the work's
192
- users, your or third parties' legal rights to forbid circumvention of
193
- technological measures.
194
-
195
- 4. Conveying Verbatim Copies.
196
-
197
- You may convey verbatim copies of the Program's source code as you
198
- receive it, in any medium, provided that you conspicuously and
199
- appropriately publish on each copy an appropriate copyright notice;
200
- keep intact all notices stating that this License and any
201
- non-permissive terms added in accord with section 7 apply to the code;
202
- keep intact all notices of the absence of any warranty; and give all
203
- recipients a copy of this License along with the Program.
204
-
205
- You may charge any price or no price for each copy that you convey,
206
- and you may offer support or warranty protection for a fee.
207
-
208
- 5. Conveying Modified Source Versions.
209
-
210
- You may convey a work based on the Program, or the modifications to
211
- produce it from the Program, in the form of source code under the
212
- terms of section 4, provided that you also meet all of these conditions:
213
-
214
- a) The work must carry prominent notices stating that you modified
215
- it, and giving a relevant date.
216
-
217
- b) The work must carry prominent notices stating that it is
218
- released under this License and any conditions added under section
219
- 7. This requirement modifies the requirement in section 4 to
220
- "keep intact all notices".
221
-
222
- c) You must license the entire work, as a whole, under this
223
- License to anyone who comes into possession of a copy. This
224
- License will therefore apply, along with any applicable section 7
225
- additional terms, to the whole of the work, and all its parts,
226
- regardless of how they are packaged. This License gives no
227
- permission to license the work in any other way, but it does not
228
- invalidate such permission if you have separately received it.
229
-
230
- d) If the work has interactive user interfaces, each must display
231
- Appropriate Legal Notices; however, if the Program has interactive
232
- interfaces that do not display Appropriate Legal Notices, your
233
- work need not make them do so.
234
-
235
- A compilation of a covered work with other separate and independent
236
- works, which are not by their nature extensions of the covered work,
237
- and which are not combined with it such as to form a larger program,
238
- in or on a volume of a storage or distribution medium, is called an
239
- "aggregate" if the compilation and its resulting copyright are not
240
- used to limit the access or legal rights of the compilation's users
241
- beyond what the individual works permit. Inclusion of a covered work
242
- in an aggregate does not cause this License to apply to the other
243
- parts of the aggregate.
244
-
245
- 6. Conveying Non-Source Forms.
246
-
247
- You may convey a covered work in object code form under the terms
248
- of sections 4 and 5, provided that you also convey the
249
- machine-readable Corresponding Source under the terms of this License,
250
- in one of these ways:
251
-
252
- a) Convey the object code in, or embodied in, a physical product
253
- (including a physical distribution medium), accompanied by the
254
- Corresponding Source fixed on a durable physical medium
255
- customarily used for software interchange.
256
-
257
- b) Convey the object code in, or embodied in, a physical product
258
- (including a physical distribution medium), accompanied by a
259
- written offer, valid for at least three years and valid for as
260
- long as you offer spare parts or customer support for that product
261
- model, to give anyone who possesses the object code either (1) a
262
- copy of the Corresponding Source for all the software in the
263
- product that is covered by this License, on a durable physical
264
- medium customarily used for software interchange, for a price no
265
- more than your reasonable cost of physically performing this
266
- conveying of source, or (2) access to copy the
267
- Corresponding Source from a network server at no charge.
268
-
269
- c) Convey individual copies of the object code with a copy of the
270
- written offer to provide the Corresponding Source. This
271
- alternative is allowed only occasionally and noncommercially, and
272
- only if you received the object code with such an offer, in accord
273
- with subsection 6b.
274
-
275
- d) Convey the object code by offering access from a designated
276
- place (gratis or for a charge), and offer equivalent access to the
277
- Corresponding Source in the same way through the same place at no
278
- further charge. You need not require recipients to copy the
279
- Corresponding Source along with the object code. If the place to
280
- copy the object code is a network server, the Corresponding Source
281
- may be on a different server (operated by you or a third party)
282
- that supports equivalent copying facilities, provided you maintain
283
- clear directions next to the object code saying where to find the
284
- Corresponding Source. Regardless of what server hosts the
285
- Corresponding Source, you remain obligated to ensure that it is
286
- available for as long as needed to satisfy these requirements.
287
-
288
- e) Convey the object code using peer-to-peer transmission, provided
289
- you inform other peers where the object code and Corresponding
290
- Source of the work are being offered to the general public at no
291
- charge under subsection 6d.
292
-
293
- A separable portion of the object code, whose source code is excluded
294
- from the Corresponding Source as a System Library, need not be
295
- included in conveying the object code work.
296
-
297
- A "User Product" is either (1) a "consumer product", which means any
298
- tangible personal property which is normally used for personal, family,
299
- or household purposes, or (2) anything designed or sold for incorporation
300
- into a dwelling. In determining whether a product is a consumer product,
301
- doubtful cases shall be resolved in favor of coverage. For a particular
302
- product received by a particular user, "normally used" refers to a
303
- typical or common use of that class of product, regardless of the status
304
- of the particular user or of the way in which the particular user
305
- actually uses, or expects or is expected to use, the product. A product
306
- is a consumer product regardless of whether the product has substantial
307
- commercial, industrial or non-consumer uses, unless such uses represent
308
- the only significant mode of use of the product.
309
-
310
- "Installation Information" for a User Product means any methods,
311
- procedures, authorization keys, or other information required to install
312
- and execute modified versions of a covered work in that User Product from
313
- a modified version of its Corresponding Source. The information must
314
- suffice to ensure that the continued functioning of the modified object
315
- code is in no case prevented or interfered with solely because
316
- modification has been made.
317
-
318
- If you convey an object code work under this section in, or with, or
319
- specifically for use in, a User Product, and the conveying occurs as
320
- part of a transaction in which the right of possession and use of the
321
- User Product is transferred to the recipient in perpetuity or for a
322
- fixed term (regardless of how the transaction is characterized), the
323
- Corresponding Source conveyed under this section must be accompanied
324
- by the Installation Information. But this requirement does not apply
325
- if neither you nor any third party retains the ability to install
326
- modified object code on the User Product (for example, the work has
327
- been installed in ROM).
328
-
329
- The requirement to provide Installation Information does not include a
330
- requirement to continue to provide support service, warranty, or updates
331
- for a work that has been modified or installed by the recipient, or for
332
- the User Product in which it has been modified or installed. Access to a
333
- network may be denied when the modification itself materially and
334
- adversely affects the operation of the network or violates the rules and
335
- protocols for communication across the network.
336
-
337
- Corresponding Source conveyed, and Installation Information provided,
338
- in accord with this section must be in a format that is publicly
339
- documented (and with an implementation available to the public in
340
- source code form), and must require no special password or key for
341
- unpacking, reading or copying.
342
-
343
- 7. Additional Terms.
344
-
345
- "Additional permissions" are terms that supplement the terms of this
346
- License by making exceptions from one or more of its conditions.
347
- Additional permissions that are applicable to the entire Program shall
348
- be treated as though they were included in this License, to the extent
349
- that they are valid under applicable law. If additional permissions
350
- apply only to part of the Program, that part may be used separately
351
- under those permissions, but the entire Program remains governed by
352
- this License without regard to the additional permissions.
353
-
354
- When you convey a copy of a covered work, you may at your option
355
- remove any additional permissions from that copy, or from any part of
356
- it. (Additional permissions may be written to require their own
357
- removal in certain cases when you modify the work.) You may place
358
- additional permissions on material, added by you to a covered work,
359
- for which you have or can give appropriate copyright permission.
360
-
361
- Notwithstanding any other provision of this License, for material you
362
- add to a covered work, you may (if authorized by the copyright holders of
363
- that material) supplement the terms of this License with terms:
364
-
365
- a) Disclaiming warranty or limiting liability differently from the
366
- terms of sections 15 and 16 of this License; or
367
-
368
- b) Requiring preservation of specified reasonable legal notices or
369
- author attributions in that material or in the Appropriate Legal
370
- Notices displayed by works containing it; or
371
-
372
- c) Prohibiting misrepresentation of the origin of that material, or
373
- requiring that modified versions of such material be marked in
374
- reasonable ways as different from the original version; or
375
-
376
- d) Limiting the use for publicity purposes of names of licensors or
377
- authors of the material; or
378
-
379
- e) Declining to grant rights under trademark law for use of some
380
- trade names, trademarks, or service marks; or
381
-
382
- f) Requiring indemnification of licensors and authors of that
383
- material by anyone who conveys the material (or modified versions of
384
- it) with contractual assumptions of liability to the recipient, for
385
- any liability that these contractual assumptions directly impose on
386
- those licensors and authors.
387
-
388
- All other non-permissive additional terms are considered "further
389
- restrictions" within the meaning of section 10. If the Program as you
390
- received it, or any part of it, contains a notice stating that it is
391
- governed by this License along with a term that is a further
392
- restriction, you may remove that term. If a license document contains
393
- a further restriction but permits relicensing or conveying under this
394
- License, you may add to a covered work material governed by the terms
395
- of that license document, provided that the further restriction does
396
- not survive such relicensing or conveying.
397
-
398
- If you add terms to a covered work in accord with this section, you
399
- must place, in the relevant source files, a statement of the
400
- additional terms that apply to those files, or a notice indicating
401
- where to find the applicable terms.
402
-
403
- Additional terms, permissive or non-permissive, may be stated in the
404
- form of a separately written license, or stated as exceptions;
405
- the above requirements apply either way.
406
-
407
- 8. Termination.
408
-
409
- You may not propagate or modify a covered work except as expressly
410
- provided under this License. Any attempt otherwise to propagate or
411
- modify it is void, and will automatically terminate your rights under
412
- this License (including any patent licenses granted under the third
413
- paragraph of section 11).
414
-
415
- However, if you cease all violation of this License, then your
416
- license from a particular copyright holder is reinstated (a)
417
- provisionally, unless and until the copyright holder explicitly and
418
- finally terminates your license, and (b) permanently, if the copyright
419
- holder fails to notify you of the violation by some reasonable means
420
- prior to 60 days after the cessation.
421
-
422
- Moreover, your license from a particular copyright holder is
423
- reinstated permanently if the copyright holder notifies you of the
424
- violation by some reasonable means, this is the first time you have
425
- received notice of violation of this License (for any work) from that
426
- copyright holder, and you cure the violation prior to 30 days after
427
- your receipt of the notice.
428
-
429
- Termination of your rights under this section does not terminate the
430
- licenses of parties who have received copies or rights from you under
431
- this License. If your rights have been terminated and not permanently
432
- reinstated, you do not qualify to receive new licenses for the same
433
- material under section 10.
434
-
435
- 9. Acceptance Not Required for Having Copies.
436
-
437
- You are not required to accept this License in order to receive or
438
- run a copy of the Program. Ancillary propagation of a covered work
439
- occurring solely as a consequence of using peer-to-peer transmission
440
- to receive a copy likewise does not require acceptance. However,
441
- nothing other than this License grants you permission to propagate or
442
- modify any covered work. These actions infringe copyright if you do
443
- not accept this License. Therefore, by modifying or propagating a
444
- covered work, you indicate your acceptance of this License to do so.
445
-
446
- 10. Automatic Licensing of Downstream Recipients.
447
-
448
- Each time you convey a covered work, the recipient automatically
449
- receives a license from the original licensors, to run, modify and
450
- propagate that work, subject to this License. You are not responsible
451
- for enforcing compliance by third parties with this License.
452
-
453
- An "entity transaction" is a transaction transferring control of an
454
- organization, or substantially all assets of one, or subdividing an
455
- organization, or merging organizations. If propagation of a covered
456
- work results from an entity transaction, each party to that
457
- transaction who receives a copy of the work also receives whatever
458
- licenses to the work the party's predecessor in interest had or could
459
- give under the previous paragraph, plus a right to possession of the
460
- Corresponding Source of the work from the predecessor in interest, if
461
- the predecessor has it or can get it with reasonable efforts.
462
-
463
- You may not impose any further restrictions on the exercise of the
464
- rights granted or affirmed under this License. For example, you may
465
- not impose a license fee, royalty, or other charge for exercise of
466
- rights granted under this License, and you may not initiate litigation
467
- (including a cross-claim or counterclaim in a lawsuit) alleging that
468
- any patent claim is infringed by making, using, selling, offering for
469
- sale, or importing the Program or any portion of it.
470
-
471
- 11. Patents.
472
-
473
- A "contributor" is a copyright holder who authorizes use under this
474
- License of the Program or a work on which the Program is based. The
475
- work thus licensed is called the contributor's "contributor version".
476
-
477
- A contributor's "essential patent claims" are all patent claims
478
- owned or controlled by the contributor, whether already acquired or
479
- hereafter acquired, that would be infringed by some manner, permitted
480
- by this License, of making, using, or selling its contributor version,
481
- but do not include claims that would be infringed only as a
482
- consequence of further modification of the contributor version. For
483
- purposes of this definition, "control" includes the right to grant
484
- patent sublicenses in a manner consistent with the requirements of
485
- this License.
486
-
487
- Each contributor grants you a non-exclusive, worldwide, royalty-free
488
- patent license under the contributor's essential patent claims, to
489
- make, use, sell, offer for sale, import and otherwise run, modify and
490
- propagate the contents of its contributor version.
491
-
492
- In the following three paragraphs, a "patent license" is any express
493
- agreement or commitment, however denominated, not to enforce a patent
494
- (such as an express permission to practice a patent or covenant not to
495
- sue for patent infringement). To "grant" such a patent license to a
496
- party means to make such an agreement or commitment not to enforce a
497
- patent against the party.
498
-
499
- If you convey a covered work, knowingly relying on a patent license,
500
- and the Corresponding Source of the work is not available for anyone
501
- to copy, free of charge and under the terms of this License, through a
502
- publicly available network server or other readily accessible means,
503
- then you must either (1) cause the Corresponding Source to be so
504
- available, or (2) arrange to deprive yourself of the benefit of the
505
- patent license for this particular work, or (3) arrange, in a manner
506
- consistent with the requirements of this License, to extend the patent
507
- license to downstream recipients. "Knowingly relying" means you have
508
- actual knowledge that, but for the patent license, your conveying the
509
- covered work in a country, or your recipient's use of the covered work
510
- in a country, would infringe one or more identifiable patents in that
511
- country that you have reason to believe are valid.
512
-
513
- If, pursuant to or in connection with a single transaction or
514
- arrangement, you convey, or propagate by procuring conveyance of, a
515
- covered work, and grant a patent license to some of the parties
516
- receiving the covered work authorizing them to use, propagate, modify
517
- or convey a specific copy of the covered work, then the patent license
518
- you grant is automatically extended to all recipients of the covered
519
- work and works based on it.
520
-
521
- A patent license is "discriminatory" if it does not include within
522
- the scope of its coverage, prohibits the exercise of, or is
523
- conditioned on the non-exercise of one or more of the rights that are
524
- specifically granted under this License. You may not convey a covered
525
- work if you are a party to an arrangement with a third party that is
526
- in the business of distributing software, under which you make payment
527
- to the third party based on the extent of your activity of conveying
528
- the work, and under which the third party grants, to any of the
529
- parties who would receive the covered work from you, a discriminatory
530
- patent license (a) in connection with copies of the covered work
531
- conveyed by you (or copies made from those copies), or (b) primarily
532
- for and in connection with specific products or compilations that
533
- contain the covered work, unless you entered into that arrangement,
534
- or that patent license was granted, prior to 28 March 2007.
535
-
536
- Nothing in this License shall be construed as excluding or limiting
537
- any implied license or other defenses to infringement that may
538
- otherwise be available to you under applicable patent law.
539
-
540
- 12. No Surrender of Others' Freedom.
541
-
542
- If conditions are imposed on you (whether by court order, agreement or
543
- otherwise) that contradict the conditions of this License, they do not
544
- excuse you from the conditions of this License. If you cannot convey a
545
- covered work so as to satisfy simultaneously your obligations under this
546
- License and any other pertinent obligations, then as a consequence you may
547
- not convey it at all. For example, if you agree to terms that obligate you
548
- to collect a royalty for further conveying from those to whom you convey
549
- the Program, the only way you could satisfy both those terms and this
550
- License would be to refrain entirely from conveying the Program.
551
-
552
- 13. Use with the GNU Affero General Public License.
553
-
554
- Notwithstanding any other provision of this License, you have
555
- permission to link or combine any covered work with a work licensed
556
- under version 3 of the GNU Affero General Public License into a single
557
- combined work, and to convey the resulting work. The terms of this
558
- License will continue to apply to the part which is the covered work,
559
- but the special requirements of the GNU Affero General Public License,
560
- section 13, concerning interaction through a network will apply to the
561
- combination as such.
562
-
563
- 14. Revised Versions of this License.
564
-
565
- The Free Software Foundation may publish revised and/or new versions of
566
- the GNU General Public License from time to time. Such new versions will
567
- be similar in spirit to the present version, but may differ in detail to
568
- address new problems or concerns.
569
-
570
- Each version is given a distinguishing version number. If the
571
- Program specifies that a certain numbered version of the GNU General
572
- Public License "or any later version" applies to it, you have the
573
- option of following the terms and conditions either of that numbered
574
- version or of any later version published by the Free Software
575
- Foundation. If the Program does not specify a version number of the
576
- GNU General Public License, you may choose any version ever published
577
- by the Free Software Foundation.
578
-
579
- If the Program specifies that a proxy can decide which future
580
- versions of the GNU General Public License can be used, that proxy's
581
- public statement of acceptance of a version permanently authorizes you
582
- to choose that version for the Program.
583
-
584
- Later license versions may give you additional or different
585
- permissions. However, no additional obligations are imposed on any
586
- author or copyright holder as a result of your choosing to follow a
587
- later version.
588
-
589
- 15. Disclaimer of Warranty.
590
-
591
- THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
- APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
- HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
- OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
- PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
- IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
- ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
-
600
- 16. Limitation of Liability.
601
-
602
- IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
- WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
- THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
- GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
- USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
- DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
- PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
- EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
- SUCH DAMAGES.
611
-
612
- 17. Interpretation of Sections 15 and 16.
613
-
614
- If the disclaimer of warranty and limitation of liability provided
615
- above cannot be given local legal effect according to their terms,
616
- reviewing courts shall apply local law that most closely approximates
617
- an absolute waiver of all civil liability in connection with the
618
- Program, unless a warranty or assumption of liability accompanies a
619
- copy of the Program in return for a fee.
620
-
621
- END OF TERMS AND CONDITIONS
622
-
623
- How to Apply These Terms to Your New Programs
624
-
625
- If you develop a new program, and you want it to be of the greatest
626
- possible use to the public, the best way to achieve this is to make it
627
- free software which everyone can redistribute and change under these terms.
628
-
629
- To do so, attach the following notices to the program. It is safest
630
- to attach them to the start of each source file to most effectively
631
- state the exclusion of warranty; and each file should have at least
632
- the "copyright" line and a pointer to where the full notice is found.
633
-
634
- <one line to give the program's name and a brief idea of what it does.>
635
- Copyright (C) <year> <name of author>
636
-
637
- This program is free software: you can redistribute it and/or modify
638
- it under the terms of the GNU General Public License as published by
639
- the Free Software Foundation, either version 3 of the License, or
640
- (at your option) any later version.
641
-
642
- This program is distributed in the hope that it will be useful,
643
- but WITHOUT ANY WARRANTY; without even the implied warranty of
644
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
- GNU General Public License for more details.
646
-
647
- You should have received a copy of the GNU General Public License
648
- along with this program. If not, see <https://www.gnu.org/licenses/>.
649
-
650
- Also add information on how to contact you by electronic and paper mail.
651
-
652
- If the program does terminal interaction, make it output a short
653
- notice like this when it starts in an interactive mode:
654
-
655
- <program> Copyright (C) <year> <name of author>
656
- This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
- This is free software, and you are welcome to redistribute it
658
- under certain conditions; type `show c' for details.
659
-
660
- The hypothetical commands `show w' and `show c' should show the appropriate
661
- parts of the General Public License. Of course, your program's commands
662
- might be different; for a GUI interface, you would use an "about box".
663
-
664
- You should also get your employer (if you work as a programmer) or school,
665
- if any, to sign a "copyright disclaimer" for the program, if necessary.
666
- For more information on this, and how to apply and follow the GNU GPL, see
667
- <https://www.gnu.org/licenses/>.
668
-
669
- The GNU General Public License does not permit incorporating your program
670
- into proprietary programs. If your program is a subroutine library, you
671
- may consider it more useful to permit linking proprietary applications with
672
- the library. If this is what you want to do, use the GNU Lesser General
673
- Public License instead of this License. But first, please read
674
- <https://www.gnu.org/licenses/why-not-lgpl.html>.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- title: Animated T2I with LoRAs
3
  emoji: 🖼
4
  colorFrom: purple
5
  colorTo: red
 
1
  ---
2
+ title: ImageGen - NoobAI
3
  emoji: 🖼
4
  colorFrom: purple
5
  colorTo: red
alembic.ini DELETED
@@ -1,84 +0,0 @@
1
- # A generic, single database configuration.
2
-
3
- [alembic]
4
- # path to migration scripts
5
- # Use forward slashes (/) also on windows to provide an os agnostic path
6
- script_location = alembic_db
7
-
8
- # template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
9
- # Uncomment the line below if you want the files to be prepended with date and time
10
- # see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
11
- # for all available tokens
12
- # file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
13
-
14
- # sys.path path, will be prepended to sys.path if present.
15
- # defaults to the current working directory.
16
- prepend_sys_path = .
17
-
18
- # timezone to use when rendering the date within the migration file
19
- # as well as the filename.
20
- # If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
21
- # Any required deps can installed by adding `alembic[tz]` to the pip requirements
22
- # string value is passed to ZoneInfo()
23
- # leave blank for localtime
24
- # timezone =
25
-
26
- # max length of characters to apply to the "slug" field
27
- # truncate_slug_length = 40
28
-
29
- # set to 'true' to run the environment during
30
- # the 'revision' command, regardless of autogenerate
31
- # revision_environment = false
32
-
33
- # set to 'true' to allow .pyc and .pyo files without
34
- # a source .py file to be detected as revisions in the
35
- # versions/ directory
36
- # sourceless = false
37
-
38
- # version location specification; This defaults
39
- # to alembic_db/versions. When using multiple version
40
- # directories, initial revisions must be specified with --version-path.
41
- # The path separator used here should be the separator specified by "version_path_separator" below.
42
- # version_locations = %(here)s/bar:%(here)s/bat:alembic_db/versions
43
-
44
- # version path separator; As mentioned above, this is the character used to split
45
- # version_locations. The default within new alembic.ini files is "os", which uses os.pathsep.
46
- # If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas.
47
- # Valid values for version_path_separator are:
48
- #
49
- # version_path_separator = :
50
- # version_path_separator = ;
51
- # version_path_separator = space
52
- # version_path_separator = newline
53
- #
54
- # Use os.pathsep. Default configuration used for new projects.
55
- version_path_separator = os
56
-
57
- # set to 'true' to search source files recursively
58
- # in each "version_locations" directory
59
- # new in Alembic version 1.10
60
- # recursive_version_locations = false
61
-
62
- # the output encoding used when revision files
63
- # are written from script.py.mako
64
- # output_encoding = utf-8
65
-
66
- sqlalchemy.url = sqlite:///user/comfyui.db
67
-
68
-
69
- [post_write_hooks]
70
- # post_write_hooks defines scripts or Python functions that are run
71
- # on newly generated revision scripts. See the documentation for further
72
- # detail and examples
73
-
74
- # format using "black" - use the console_scripts runner, against the "black" entrypoint
75
- # hooks = black
76
- # black.type = console_scripts
77
- # black.entrypoint = black
78
- # black.options = -l 79 REVISION_SCRIPT_FILENAME
79
-
80
- # lint with attempts to fix using "ruff" - use the exec runner, execute a binary
81
- # hooks = ruff
82
- # ruff.type = exec
83
- # ruff.executable = %(here)s/.venv/bin/ruff
84
- # ruff.options = check --fix REVISION_SCRIPT_FILENAME
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
alembic_db/README.md DELETED
@@ -1,4 +0,0 @@
1
- ## Generate new revision
2
-
3
- 1. Update models in `/app/database/models.py`
4
- 2. Run `alembic revision --autogenerate -m "{your message}"`
 
 
 
 
 
alembic_db/env.py DELETED
@@ -1,64 +0,0 @@
1
- from sqlalchemy import engine_from_config
2
- from sqlalchemy import pool
3
-
4
- from alembic import context
5
-
6
- # this is the Alembic Config object, which provides
7
- # access to the values within the .ini file in use.
8
- config = context.config
9
-
10
-
11
- from app.database.models import Base
12
- target_metadata = Base.metadata
13
-
14
- # other values from the config, defined by the needs of env.py,
15
- # can be acquired:
16
- # my_important_option = config.get_main_option("my_important_option")
17
- # ... etc.
18
-
19
-
20
- def run_migrations_offline() -> None:
21
- """Run migrations in 'offline' mode.
22
- This configures the context with just a URL
23
- and not an Engine, though an Engine is acceptable
24
- here as well. By skipping the Engine creation
25
- we don't even need a DBAPI to be available.
26
- Calls to context.execute() here emit the given string to the
27
- script output.
28
- """
29
- url = config.get_main_option("sqlalchemy.url")
30
- context.configure(
31
- url=url,
32
- target_metadata=target_metadata,
33
- literal_binds=True,
34
- dialect_opts={"paramstyle": "named"},
35
- )
36
-
37
- with context.begin_transaction():
38
- context.run_migrations()
39
-
40
-
41
- def run_migrations_online() -> None:
42
- """Run migrations in 'online' mode.
43
- In this scenario we need to create an Engine
44
- and associate a connection with the context.
45
- """
46
- connectable = engine_from_config(
47
- config.get_section(config.config_ini_section, {}),
48
- prefix="sqlalchemy.",
49
- poolclass=pool.NullPool,
50
- )
51
-
52
- with connectable.connect() as connection:
53
- context.configure(
54
- connection=connection, target_metadata=target_metadata
55
- )
56
-
57
- with context.begin_transaction():
58
- context.run_migrations()
59
-
60
-
61
- if context.is_offline_mode():
62
- run_migrations_offline()
63
- else:
64
- run_migrations_online()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
alembic_db/script.py.mako DELETED
@@ -1,28 +0,0 @@
1
- """${message}
2
-
3
- Revision ID: ${up_revision}
4
- Revises: ${down_revision | comma,n}
5
- Create Date: ${create_date}
6
-
7
- """
8
- from typing import Sequence, Union
9
-
10
- from alembic import op
11
- import sqlalchemy as sa
12
- ${imports if imports else ""}
13
-
14
- # revision identifiers, used by Alembic.
15
- revision: str = ${repr(up_revision)}
16
- down_revision: Union[str, None] = ${repr(down_revision)}
17
- branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
18
- depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
19
-
20
-
21
- def upgrade() -> None:
22
- """Upgrade schema."""
23
- ${upgrades if upgrades else "pass"}
24
-
25
-
26
- def downgrade() -> None:
27
- """Downgrade schema."""
28
- ${downgrades if downgrades else "pass"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api_server/routes/internal/README.md DELETED
@@ -1,3 +0,0 @@
1
- # ComfyUI Internal Routes
2
-
3
- All routes under the `/internal` path are designated for **internal use by ComfyUI only**. These routes are not intended for use by external applications may change at any time without notice.
 
 
 
 
api_server/routes/internal/internal_routes.py DELETED
@@ -1,73 +0,0 @@
1
- from aiohttp import web
2
- from typing import Optional
3
- from folder_paths import folder_names_and_paths, get_directory_by_type
4
- from api_server.services.terminal_service import TerminalService
5
- import app.logger
6
- import os
7
-
8
- class InternalRoutes:
9
- '''
10
- The top level web router for internal routes: /internal/*
11
- The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
12
- Check README.md for more information.
13
- '''
14
-
15
- def __init__(self, prompt_server):
16
- self.routes: web.RouteTableDef = web.RouteTableDef()
17
- self._app: Optional[web.Application] = None
18
- self.prompt_server = prompt_server
19
- self.terminal_service = TerminalService(prompt_server)
20
-
21
- def setup_routes(self):
22
- @self.routes.get('/logs')
23
- async def get_logs(request):
24
- return web.json_response("".join([(l["t"] + " - " + l["m"]) for l in app.logger.get_logs()]))
25
-
26
- @self.routes.get('/logs/raw')
27
- async def get_raw_logs(request):
28
- self.terminal_service.update_size()
29
- return web.json_response({
30
- "entries": list(app.logger.get_logs()),
31
- "size": {"cols": self.terminal_service.cols, "rows": self.terminal_service.rows}
32
- })
33
-
34
- @self.routes.patch('/logs/subscribe')
35
- async def subscribe_logs(request):
36
- json_data = await request.json()
37
- client_id = json_data["clientId"]
38
- enabled = json_data["enabled"]
39
- if enabled:
40
- self.terminal_service.subscribe(client_id)
41
- else:
42
- self.terminal_service.unsubscribe(client_id)
43
-
44
- return web.Response(status=200)
45
-
46
-
47
- @self.routes.get('/folder_paths')
48
- async def get_folder_paths(request):
49
- response = {}
50
- for key in folder_names_and_paths:
51
- response[key] = folder_names_and_paths[key][0]
52
- return web.json_response(response)
53
-
54
- @self.routes.get('/files/{directory_type}')
55
- async def get_files(request: web.Request) -> web.Response:
56
- directory_type = request.match_info['directory_type']
57
- if directory_type not in ("output", "input", "temp"):
58
- return web.json_response({"error": "Invalid directory type"}, status=400)
59
-
60
- directory = get_directory_by_type(directory_type)
61
- sorted_files = sorted(
62
- (entry for entry in os.scandir(directory) if entry.is_file()),
63
- key=lambda entry: -entry.stat().st_mtime
64
- )
65
- return web.json_response([entry.name for entry in sorted_files], status=200)
66
-
67
-
68
- def get_app(self):
69
- if self._app is None:
70
- self._app = web.Application()
71
- self.setup_routes()
72
- self._app.add_routes(self.routes)
73
- return self._app
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api_server/services/terminal_service.py DELETED
@@ -1,60 +0,0 @@
1
- from app.logger import on_flush
2
- import os
3
- import shutil
4
-
5
-
6
- class TerminalService:
7
- def __init__(self, server):
8
- self.server = server
9
- self.cols = None
10
- self.rows = None
11
- self.subscriptions = set()
12
- on_flush(self.send_messages)
13
-
14
- def get_terminal_size(self):
15
- try:
16
- size = os.get_terminal_size()
17
- return (size.columns, size.lines)
18
- except OSError:
19
- try:
20
- size = shutil.get_terminal_size()
21
- return (size.columns, size.lines)
22
- except OSError:
23
- return (80, 24) # fallback to 80x24
24
-
25
- def update_size(self):
26
- columns, lines = self.get_terminal_size()
27
- changed = False
28
-
29
- if columns != self.cols:
30
- self.cols = columns
31
- changed = True
32
-
33
- if lines != self.rows:
34
- self.rows = lines
35
- changed = True
36
-
37
- if changed:
38
- return {"cols": self.cols, "rows": self.rows}
39
-
40
- return None
41
-
42
- def subscribe(self, client_id):
43
- self.subscriptions.add(client_id)
44
-
45
- def unsubscribe(self, client_id):
46
- self.subscriptions.discard(client_id)
47
-
48
- def send_messages(self, entries):
49
- if not len(entries) or not len(self.subscriptions):
50
- return
51
-
52
- new_size = self.update_size()
53
-
54
- for client_id in self.subscriptions.copy(): # prevent: Set changed size during iteration
55
- if client_id not in self.server.sockets:
56
- # Automatically unsub if the socket has disconnected
57
- self.unsubscribe(client_id)
58
- continue
59
-
60
- self.server.send_sync("logs", {"entries": entries, "size": new_size}, client_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
api_server/utils/file_operations.py DELETED
@@ -1,42 +0,0 @@
1
- import os
2
- from typing import List, Union, TypedDict, Literal
3
- from typing_extensions import TypeGuard
4
- class FileInfo(TypedDict):
5
- name: str
6
- path: str
7
- type: Literal["file"]
8
- size: int
9
-
10
- class DirectoryInfo(TypedDict):
11
- name: str
12
- path: str
13
- type: Literal["directory"]
14
-
15
- FileSystemItem = Union[FileInfo, DirectoryInfo]
16
-
17
- def is_file_info(item: FileSystemItem) -> TypeGuard[FileInfo]:
18
- return item["type"] == "file"
19
-
20
- class FileSystemOperations:
21
- @staticmethod
22
- def walk_directory(directory: str) -> List[FileSystemItem]:
23
- file_list: List[FileSystemItem] = []
24
- for root, dirs, files in os.walk(directory):
25
- for name in files:
26
- file_path = os.path.join(root, name)
27
- relative_path = os.path.relpath(file_path, directory)
28
- file_list.append({
29
- "name": name,
30
- "path": relative_path,
31
- "type": "file",
32
- "size": os.path.getsize(file_path)
33
- })
34
- for name in dirs:
35
- dir_path = os.path.join(root, name)
36
- relative_path = os.path.relpath(dir_path, directory)
37
- file_list.append({
38
- "name": name,
39
- "path": relative_path,
40
- "type": "directory"
41
- })
42
- return file_list
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -1,553 +1,127 @@
 
1
  import os
2
- import random
3
  import sys
4
- from typing import Sequence, Mapping, Any, Union
5
- import torch
6
- import gradio as gr
7
- from PIL import Image
8
- from huggingface_hub import hf_hub_download
9
- import spaces
10
- from comfy import model_management # We need to import this early
11
- import gc
12
  import requests
13
- import re
14
- import hashlib
15
- import shutil
16
-
17
- # --- Startup Dummy Function ---
18
- @spaces.GPU(duration=60)
19
- def dummy_gpu_for_startup():
20
- print("Dummy function for startup check executed. This is normal.")
21
- return "Startup check passed."
22
-
23
- # --- ComfyUI Backend Setup ---
24
- def find_path(name: str, path: str = None) -> str:
25
- if path is None: path = os.getcwd()
26
- if name in os.listdir(path): return os.path.join(path, name)
27
- parent_directory = os.path.dirname(path)
28
- if parent_directory == path: return None
29
- return find_path(name, parent_directory)
30
-
31
- def add_comfyui_directory_to_sys_path() -> None:
32
- comfyui_path = find_path("ComfyUI")
33
- if comfyui_path and os.path.isdir(comfyui_path):
34
- sys.path.append(comfyui_path)
35
- print(f"'{comfyui_path}' added to sys.path")
36
-
37
- def add_extra_model_paths() -> None:
38
- try: from main import load_extra_path_config
39
- except ImportError: from utils.extra_config import load_extra_path_config
40
- extra_model_paths = find_path("extra_model_paths.yaml")
41
- if extra_model_paths: load_extra_path_config(extra_model_paths)
42
- else: print("Could not find extra_model_paths.yaml")
43
-
44
- add_comfyui_directory_to_sys_path()
45
- add_extra_model_paths()
46
-
47
- # Monkey-patch for Sage Attention
48
- print("Attempting to monkey-patch ComfyUI for Sage Attention...")
49
- try:
50
- model_management.sage_attention_enabled = lambda: True
51
- model_management.pytorch_attention_enabled = lambda: False
52
- print("Successfully monkey-patched model_management for Sage Attention.")
53
- except Exception as e:
54
- print(f"An error occurred during monkey-patching: {e}")
55
-
56
- # --- Constants & Configuration ---
57
- CHECKPOINT_DIR = "models/checkpoints"
58
- LORA_DIR = "models/loras"
59
- os.makedirs(CHECKPOINT_DIR, exist_ok=True)
60
- os.makedirs(LORA_DIR, exist_ok=True)
61
-
62
- # --- Model Definitions with Hashes ---
63
- # Format: {Display Name: (Repo ID, Filename, Type, Hash)}
64
- MODEL_MAP_ILLUSTRIOUS = {
65
- "Laxhar/noobai-XL-Vpred-1.0": ("Laxhar/noobai-XL-Vpred-1.0", "NoobAI-XL-Vpred-v1.0.safetensors", "SDXL", "ea349eeae8"),
66
- "Laxhar/noobai-XL-1.1": ("Laxhar/noobai-XL-1.1", "NoobAI-XL-v1.1.safetensors", "SDXL", "6681e8e4b1"),
67
- "WAI0731/wai-nsfw-illustrious-sdxl-v140": ("Ine007/waiNSFWIllustrious_v140", "waiNSFWIllustrious_v140.safetensors", "SDXL", "bdb59bac77"),
68
- "Ikena/hassaku-xl-illustrious-v30": ("misri/hassakuXLIllustrious_v30", "hassakuXLIllustrious_v30.safetensors", "SDXL", "b4fb5f829a"),
69
- "bluepen5805/noob_v_pencil-XL": ("bluepen5805/noob_v_pencil-XL", "noob_v_pencil-XL-v3.0.0.safetensors", "SDXL", "90b7911a78"),
70
- "RedRayz/hikari_noob_v-pred_1.2.2": ("RedRayz/hikari_noob_v-pred_1.2.2", "Hikari_Noob_v-pred_1.2.2.safetensors", "SDXL", "874170688a"),
71
- }
72
- MODEL_MAP_ANIMAGINE = {
73
- "cagliostrolab/animagine-xl-4.0": ("cagliostrolab/animagine-xl-4.0", "animagine-xl-4.0.safetensors", "SDXL", "6327eca98b"),
74
- "cagliostrolab/animagine-xl-3.1": ("cagliostrolab/animagine-xl-3.1", "animagine-xl-3.1.safetensors", "SDXL", "e3c47aedb0"),
75
- }
76
- MODEL_MAP_PONY = {
77
- "PurpleSmartAI/Pony_Diffusion_V6_XL": ("LyliaEngine/Pony_Diffusion_V6_XL", "ponyDiffusionV6XL_v6StartWithThisOne.safetensors", "SDXL", "67ab2fd8ec"),
78
- }
79
- MODEL_MAP_SD15 = {
80
- "Yuno779/anything-v3": ("ckpt/anything-v3.0", "Anything-V3.0-pruned.safetensors", "SD1.5", "ddd565f806"),
81
- }
82
-
83
- # --- Combined Maps for Global Lookup ---
84
- ALL_MODEL_MAP = {**MODEL_MAP_ILLUSTRIOUS, **MODEL_MAP_ANIMAGINE, **MODEL_MAP_PONY, **MODEL_MAP_SD15}
85
- MODEL_TYPE_MAP = {k: v[2] for k, v in ALL_MODEL_MAP.items()}
86
- DISPLAY_NAME_TO_HASH_MAP = {k: v[3] for k, v in ALL_MODEL_MAP.items()}
87
- HASH_TO_DISPLAY_NAME_MAP = {v[3]: k for k, v in ALL_MODEL_MAP.items()}
88
-
89
- # --- UI Defaults ---
90
- DEFAULT_NEGATIVE_PROMPT = "monochrome, (low quality, worst quality:1.2), 3d, watermark, signature, ugly, poorly drawn,"
91
- MAX_LORAS = 5
92
- LORA_SOURCE_CHOICES = ["Civitai", "TensorArt", "Custom URL", "File"]
93
 
94
- def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
95
- try: return obj[index]
96
- except (KeyError, IndexError):
97
- try: return obj["result"][index]
98
- except (KeyError, IndexError): return None
99
 
100
- def import_custom_nodes() -> None:
101
- import asyncio, execution, server
102
- from nodes import init_extra_nodes
103
- loop = asyncio.new_event_loop()
104
- asyncio.set_event_loop(loop)
105
- server_instance = server.PromptServer(loop)
106
- execution.PromptQueue(server_instance)
107
- loop.run_until_complete(init_extra_nodes())
108
 
109
- # --- Import ComfyUI Nodes & Get Choices ---
110
- from nodes import CheckpointLoaderSimple, EmptyLatentImage, KSampler, VAEDecode, SaveImage, NODE_CLASS_MAPPINGS
111
- import_custom_nodes()
112
- CLIPTextEncodeSDXL = NODE_CLASS_MAPPINGS['CLIPTextEncodeSDXL']
113
- CLIPTextEncode = NODE_CLASS_MAPPINGS['CLIPTextEncode']
114
- LoraLoader = NODE_CLASS_MAPPINGS['LoraLoader']
115
- CLIPSetLastLayer = NODE_CLASS_MAPPINGS['CLIPSetLastLayer']
116
- try:
117
- SAMPLER_CHOICES = KSampler.INPUT_TYPES()["required"]["sampler_name"][0]
118
- SCHEDULER_CHOICES = KSampler.INPUT_TYPES()["required"]["scheduler"][0]
119
- except Exception:
120
- SAMPLER_CHOICES = ['euler', 'dpmpp_2m_sde_gpu']
121
- SCHEDULER_CHOICES = ['normal', 'karras']
122
 
123
- # --- Instantiate Node Objects ---
124
- checkpointloadersimple = CheckpointLoaderSimple(); cliptextencodesdxl = CLIPTextEncodeSDXL()
125
- cliptextencode_sd15 = CLIPTextEncode(); emptylatentimage = EmptyLatentImage()
126
- ksampler = KSampler(); vaedecode = VAEDecode(); saveimage = SaveImage(); loraloader = LoraLoader()
127
- clipsetlastlayer = CLIPSetLastLayer()
128
-
129
- # --- LoRA & File Utils ---
130
- def get_civitai_file_info(version_id):
131
- api_url = f"https://civitai.com/api/v1/model-versions/{version_id}"
132
- try:
133
- response = requests.get(api_url, timeout=10); response.raise_for_status(); data = response.json()
134
- for file_data in data.get('files', []):
135
- if file_data.get('type') == 'Model' and file_data['name'].endswith('.safetensors'): return file_data
136
- if data.get('files'): return data['files'][0]
137
- except Exception: return None
138
-
139
- def get_tensorart_file_info(model_id):
140
- api_url = f"https://tensor.art/api/v1/models/{model_id}"
141
  try:
142
- response = requests.get(api_url, timeout=10); response.raise_for_status(); data = response.json()
143
- model_versions = data.get('modelVersions', [])
144
- if not model_versions: return None
145
- for file_data in model_versions[0].get('files', []):
146
- if file_data['name'].endswith('.safetensors'): return file_data
147
- return model_versions[0]['files'][0] if model_versions[0].get('files') else None
148
- except Exception: return None
149
-
150
- def download_file(url, save_path, api_key=None, progress=None, desc=""):
151
- if os.path.exists(save_path): return f"File already exists: {os.path.basename(save_path)}"
152
- headers = {'Authorization': f'Bearer {api_key}'} if api_key and api_key.strip() else {}
153
- try:
154
- if progress: progress(0, desc=desc)
155
- response = requests.get(url, stream=True, headers=headers, timeout=15); response.raise_for_status()
156
- total_size = int(response.headers.get('content-length', 0))
157
- with open(save_path, "wb") as f:
158
- downloaded = 0
159
- for chunk in response.iter_content(chunk_size=8192):
160
- f.write(chunk)
161
- if progress and total_size > 0: downloaded += len(chunk); progress(downloaded / total_size, desc=desc)
162
- return f"Successfully downloaded: {os.path.basename(save_path)}"
163
  except Exception as e:
164
- if os.path.exists(save_path): os.remove(save_path)
165
- return f"Download failed for {os.path.basename(save_path)}: {e}"
 
 
166
 
167
- def get_lora_path(source, id_or_url, civitai_key, tensorart_key, progress):
168
- if not id_or_url or not id_or_url.strip(): return None, "No ID/URL provided."
169
- if source == "Civitai":
170
- version_id = id_or_url.strip(); local_path = os.path.join(LORA_DIR, f"civitai_{version_id}.safetensors"); file_info, api_key_to_use = get_civitai_file_info(version_id), civitai_key; source_name = f"Civitai ID {version_id}"
171
- elif source == "TensorArt":
172
- model_id = id_or_url.strip(); local_path = os.path.join(LORA_DIR, f"tensorart_{model_id}.safetensors"); file_info, api_key_to_use = get_tensorart_file_info(model_id), tensorart_key; source_name = f"TensorArt ID {model_id}"
173
- elif source == "Custom URL":
174
- url = id_or_url.strip(); url_hash = hashlib.md5(url.encode()).hexdigest(); local_path = os.path.join(LORA_DIR, f"custom_{url_hash}.safetensors"); file_info, api_key_to_use = {'downloadUrl': url}, None; source_name = f"URL {url[:30]}..."
175
- else: return None, "Invalid source."
176
- if os.path.exists(local_path): return local_path, "File already exists."
177
- if not file_info or not file_info.get('downloadUrl'): return None, f"Could not get download link for {source_name}."
178
- status = download_file(file_info['downloadUrl'], local_path, api_key_to_use, progress=progress, desc=f"Downloading {source_name}")
179
- return (local_path, status) if "Successfully" in status else (None, status)
180
 
181
- def pre_download_loras(civitai_api_key, tensorart_api_key, *lora_data, progress=gr.Progress(track_tqdm=True)):
182
- sources, ids, _, files = lora_data[0::4], lora_data[1::4], lora_data[2::4], lora_data[3::4]
183
- active_loras = [(s, i) for s, i, f in zip(sources, ids, files) if s in ["Civitai", "TensorArt", "Custom URL"] and i and i.strip() and f is None]
184
- if not active_loras: return "No remote LoRAs specified for pre-downloading."
185
- log = [f"* {s} ID {i}: {get_lora_path(s, i, civitai_api_key, tensorart_api_key, progress)[1]}" for s, i in active_loras]
186
- return "\n".join(log)
187
 
188
- # --- Model Management & Core Logic ---
189
- current_loaded_model_name = None; loaded_checkpoint_tuple = None
190
- def load_model(model_display_name: str, progress=gr.Progress()):
191
- global current_loaded_model_name, loaded_checkpoint_tuple
192
- if model_display_name == current_loaded_model_name and loaded_checkpoint_tuple: return loaded_checkpoint_tuple
193
- if loaded_checkpoint_tuple: model_management.unload_all_models(); loaded_checkpoint_tuple = None; gc.collect(); torch.cuda.empty_cache()
194
-
195
- repo_id, filename, _, _ = ALL_MODEL_MAP[model_display_name]
196
- local_file_path = os.path.join(CHECKPOINT_DIR, filename)
197
 
198
- if not os.path.exists(local_file_path):
199
- progress(0, desc=f"Downloading model: {model_display_name}")
200
- hf_hub_download(repo_id=repo_id, filename=filename, local_dir=CHECKPOINT_DIR, local_dir_use_symlinks=False)
201
-
202
- progress(0.5, desc=f"Loading '{filename}'")
203
- MODEL_TUPLE = checkpointloadersimple.load_checkpoint(ckpt_name=filename)
204
- model_management.load_models_gpu([get_value_at_index(MODEL_TUPLE, 0)])
205
- current_loaded_model_name = model_display_name; loaded_checkpoint_tuple = MODEL_TUPLE
206
- progress(1.0, desc="Model loaded"); return loaded_checkpoint_tuple
207
-
208
- def _generate_image_logic(model_display_name: str, positive_prompt: str, negative_prompt: str,
209
- seed: int, batch_size: int, width: int, height: int, guidance_scale: float, num_inference_steps: int,
210
- sampler_name: str, scheduler: str, civitai_api_key: str, tensorart_api_key: str, *lora_data,
211
- progress=gr.Progress(track_tqdm=True)):
212
- output_images = []
213
- is_sd15 = MODEL_TYPE_MAP.get(model_display_name) == "SD1.5"
214
- clip_skip = 1
215
- if is_sd15 and len(lora_data) > MAX_LORAS * 4:
216
- clip_skip = int(lora_data[-1])
217
- lora_data = lora_data[:-1]
218
-
219
- with torch.inference_mode():
220
- model_tuple = load_model(model_display_name, progress)
221
- model, clip, vae = (get_value_at_index(model_tuple, i) for i in range(3))
222
-
223
- if is_sd15:
224
- clip = get_value_at_index(clipsetlastlayer.set_last_layer(clip=clip, stop_at_clip_layer=-clip_skip), 0)
225
-
226
- active_loras_for_meta = []
227
- sources, ids, scales, files = lora_data[0::4], lora_data[1::4], lora_data[2::4], lora_data[3::4]
228
- for i, (source, lora_id, scale, custom_file) in enumerate(zip(sources, ids, scales, files)):
229
- if scale > 0:
230
- lora_filename = None
231
- if custom_file:
232
- lora_filename = os.path.basename(custom_file.name)
233
- shutil.copy(custom_file.name, LORA_DIR)
234
- elif lora_id and lora_id.strip():
235
- local_path, _ = get_lora_path(source, lora_id, civitai_api_key, tensorart_api_key, progress)
236
- if local_path: lora_filename = os.path.basename(local_path)
237
-
238
- if lora_filename:
239
- lora_tuple = loraloader.load_lora(model=model, clip=clip, lora_name=lora_filename, strength_model=scale, strength_clip=scale)
240
- model, clip = get_value_at_index(lora_tuple, 0), get_value_at_index(lora_tuple, 1)
241
- active_loras_for_meta.append(f"{source} {lora_id}:{scale}")
242
-
243
- loras_string = f"LoRAs: [{', '.join(active_loras_for_meta)}]" if active_loras_for_meta else ""
244
-
245
- if is_sd15:
246
- pos_cond = cliptextencode_sd15.encode(text=positive_prompt, clip=clip)
247
- neg_cond = cliptextencode_sd15.encode(text=negative_prompt, clip=clip)
248
- else:
249
- pos_cond = cliptextencodesdxl.encode(width=width, height=height, text_g=positive_prompt, text_l=positive_prompt, clip=clip, target_width=width, target_height=height, crop_w=0, crop_h=0)
250
- neg_cond = cliptextencodesdxl.encode(width=width, height=height, text_g=negative_prompt, text_l=negative_prompt, clip=clip, target_width=width, target_height=height, crop_w=0, crop_h=0)
251
-
252
- start_seed = seed if seed != -1 else random.randint(0, 2**64 - 1)
253
-
254
- latent = emptylatentimage.generate(width=width, height=height, batch_size=batch_size)
255
-
256
- sampled = ksampler.sample(
257
- seed=start_seed,
258
- steps=num_inference_steps,
259
- cfg=guidance_scale,
260
- sampler_name=sampler_name,
261
- scheduler=scheduler,
262
- denoise=1.0,
263
- model=model,
264
- positive=get_value_at_index(pos_cond, 0),
265
- negative=get_value_at_index(neg_cond, 0),
266
- latent_image=get_value_at_index(latent, 0)
267
- )
268
-
269
- decoded_images_tensor = get_value_at_index(vaedecode.decode(samples=get_value_at_index(sampled, 0), vae=vae), 0)
270
 
271
- for i in range(decoded_images_tensor.shape[0]):
272
- img_tensor = decoded_images_tensor[i]
273
- pil_image = Image.fromarray((img_tensor.cpu().numpy() * 255.0).astype("uint8"))
274
-
275
- current_seed = start_seed + i
276
-
277
- model_hash = DISPLAY_NAME_TO_HASH_MAP.get(model_display_name, "N/A")
278
- params_string = f"{positive_prompt}\nNegative prompt: {negative_prompt}\n"
279
- params_string += f"Steps: {num_inference_steps}, Sampler: {sampler_name}, Scheduler: {scheduler}, CFG scale: {guidance_scale}, Seed: {current_seed}, Size: {width}x{height}, Base Model: {model_display_name}, Model hash: {model_hash}"
280
- if is_sd15: params_string += f", Clip skip: {clip_skip}"
281
- params_string += f", {loras_string}"
282
- pil_image.info = {'parameters': params_string.strip()}
283
-
284
- output_images.append(pil_image)
285
-
286
- return output_images
287
 
288
- def generate_image_wrapper(*args, **kwargs):
289
- logic_args_list = list(args[:11])
290
- zero_gpu_duration = args[11]
291
- logic_args_list.extend(args[12:])
292
- duration = 60
293
  try:
294
- if zero_gpu_duration and int(zero_gpu_duration) > 0:
295
- duration = int(zero_gpu_duration)
296
- except (ValueError, TypeError):
297
- pass
298
- return spaces.GPU(duration=duration)(_generate_image_logic)(*logic_args_list, **kwargs)
299
-
300
-
301
- # --- PNG Info & UI Logic ---
302
- def _parse_parameters(params_text):
303
- data = {}; lines = params_text.strip().split('\n'); data['prompt'] = lines[0]
304
- data['negative_prompt'] = lines[1].replace("Negative prompt:", "").strip() if len(lines) > 1 and lines[1].startswith("Negative prompt:") else ""
305
- params_line = '\n'.join(lines[2:])
306
- def find_param(key, default, cast_type=str):
307
- match = re.search(fr"\b{key}: ([^,]+?)(,|$|\n)", params_line)
308
- return cast_type(match.group(1).strip()) if match else default
309
- data['steps'] = find_param("Steps", 28, int); data['sampler'] = find_param("Sampler", SAMPLER_CHOICES[0], str)
310
- data['scheduler'] = find_param("Scheduler", SCHEDULER_CHOICES[0], str); data['cfg_scale'] = find_param("CFG scale", 7.5, float)
311
- data['seed'] = find_param("Seed", -1, int); data['clip_skip'] = find_param("Clip skip", 1, int)
312
- data['base_model'] = find_param("Base Model", list(ALL_MODEL_MAP.keys())[0], str); data['model_hash'] = find_param("Model hash", None, str)
313
- size_match = re.search(r"Size: (\d+)x(\d+)", params_line)
314
- data['width'], data['height'] = (int(size_match.group(1)), int(size_match.group(2))) if size_match else (1024, 1024)
315
- return data
316
-
317
- def get_png_info(image):
318
- if not image or not (params := image.info.get('parameters')): return "", "", "No metadata found in the image."
319
- parsed_data = _parse_parameters(params)
320
- other_params_text = "\n".join([p.strip() for p in '\n'.join(params.strip().split('\n')[2:]).split(',')])
321
- return parsed_data.get('prompt', ''), parsed_data.get('negative_prompt', ''), other_params_text
322
-
323
- def apply_data_to_ui(data, target_tab):
324
- final_sampler = data.get('sampler') if data.get('sampler') in SAMPLER_CHOICES else SAMPLER_CHOICES[0]
325
- default_scheduler = 'normal' if 'normal' in SCHEDULER_CHOICES else SCHEDULER_CHOICES[0]
326
- final_scheduler = data.get('scheduler') if data.get('scheduler') in SCHEDULER_CHOICES else default_scheduler
327
-
328
- updates = {}
329
- base_model_name = data.get('base_model')
330
-
331
- if target_tab == "Illustrious":
332
- if base_model_name in MODEL_MAP_ILLUSTRIOUS:
333
- updates.update({base_model_name_input_illustrious: base_model_name})
334
- updates.update({prompt_illustrious: data['prompt'], negative_prompt_illustrious: data['negative_prompt'], seed_illustrious: data['seed'], width_illustrious: data['width'], height_illustrious: data['height'], guidance_scale_illustrious: data['cfg_scale'], num_inference_steps_illustrious: data['steps'], sampler_illustrious: final_sampler, schedule_type_illustrious: final_scheduler, model_tabs: gr.Tabs(selected=0)})
335
- elif target_tab == "Animagine":
336
- if base_model_name in MODEL_MAP_ANIMAGINE:
337
- updates.update({base_model_name_input_animagine: base_model_name})
338
- updates.update({prompt_animagine: data['prompt'], negative_prompt_animagine: data['negative_prompt'], seed_animagine: data['seed'], width_animagine: data['width'], height_animagine: data['height'], guidance_scale_animagine: data['cfg_scale'], num_inference_steps_animagine: data['steps'], sampler_animagine: final_sampler, schedule_type_animagine: final_scheduler, model_tabs: gr.Tabs(selected=1)})
339
- elif target_tab == "Pony":
340
- if base_model_name in MODEL_MAP_PONY:
341
- updates.update({base_model_name_input_pony: base_model_name})
342
- updates.update({prompt_pony: data['prompt'], negative_prompt_pony: data['negative_prompt'], seed_pony: data['seed'], width_pony: data['width'], height_pony: data['height'], guidance_scale_pony: data['cfg_scale'], num_inference_steps_pony: data['steps'], sampler_pony: final_sampler, schedule_type_pony: final_scheduler, model_tabs: gr.Tabs(selected=2)})
343
- elif target_tab == "SD1.5":
344
- if base_model_name in MODEL_MAP_SD15:
345
- updates.update({base_model_name_input_sd15: base_model_name})
346
- updates.update({prompt_sd15: data['prompt'], negative_prompt_sd15: data['negative_prompt'], seed_sd15: data['seed'], width_sd15: data['width'], height_sd15: data['height'], guidance_scale_sd15: data['cfg_scale'], num_inference_steps_sd15: data['steps'], sampler_sd15: final_sampler, schedule_type_sd15: final_scheduler, clip_skip_sd15: data.get('clip_skip', 1), model_tabs: gr.Tabs(selected=3)})
347
 
348
- updates[tabs] = gr.Tabs(selected=0)
349
- return updates
350
-
351
- def send_info_to_tab(image, target_tab):
352
- if not image or not image.info.get('parameters', ''): return {comp: gr.update() for comp in all_ui_components}
353
- data = _parse_parameters(image.info['parameters'])
354
- return apply_data_to_ui(data, target_tab)
355
-
356
- def send_info_by_hash(image):
357
- if not image or not image.info.get('parameters', ''): return {comp: gr.update() for comp in all_ui_components}
358
- data = _parse_parameters(image.info['parameters'])
359
- model_hash = data.get('model_hash')
360
- display_name = HASH_TO_DISPLAY_NAME_MAP.get(model_hash)
361
-
362
- if not display_name:
363
- raise gr.Error("Model hash not found in this app's model list. The original model name from the PNG will be used if it exists in the target tab.")
364
-
365
- if display_name in MODEL_MAP_ILLUSTRIOUS: target_tab = "Illustrious"
366
- elif display_name in MODEL_MAP_ANIMAGINE: target_tab = "Animagine"
367
- elif display_name in MODEL_MAP_PONY: target_tab = "Pony"
368
- elif display_name in MODEL_MAP_SD15: target_tab = "SD1.5"
369
- else:
370
- raise gr.Error("Cannot determine the correct tab for this model.")
371
-
372
- data['base_model'] = display_name
373
- return apply_data_to_ui(data, target_tab)
374
-
375
- # --- UI Generation Functions ---
376
- def create_lora_settings_ui():
377
- with gr.Accordion("LoRA Settings", open=False):
378
- gr.Markdown("⚠️ **Responsible Use Notice:** Please avoid excessive, rapid, or automated (scripted) use of the pre-download LoRA feature. Overt misuse may lead to service disruption. Thank you for your cooperation.")
379
- gr.Markdown("For LoRAs that require login to download, you may need to enter the corresponding API Key.")
380
- with gr.Row():
381
- civitai_api_key = gr.Textbox(label="Civitai API Key", placeholder="Enter your Civitai API Key", type="password", scale=1)
382
- tensorart_api_key = gr.Textbox(label="TensorArt API Key", placeholder="Enter your TensorArt API Key", type="password", scale=1)
383
- gr.Markdown("---")
384
- gr.Markdown("For each LoRA, choose a source, provide an ID/URL, or upload a file.")
385
- gr.Markdown("""
386
- <div style='background-color: #282828; color: #a0aec0; padding: 10px; border-radius: 5px; margin-top: 10px; margin-bottom: 15px;'>
387
- <b>Input Examples:</b>
388
- <ul>
389
- <li><b>Civitai:</b> Enter the <b>Model Version ID</b>, not the Model ID. Example: <code>133755</code> (Found in the URL, e.g., <code>civitai.com/models/122136?modelVersionId=<b>133755</b></code>)</li>
390
- <li><b>TensorArt:</b> Enter the <b>Model ID</b>. Example: <code>706684852832599558</code> (Found in the URL, e.g., <code>tensor.art/models/<b>706684852832599558</b></code>)</li>
391
- <li><b>Custom URL:</b> Provide a direct download link to a <code>.safetensors</code> file. Example: <code>https://huggingface.co/path/to/your/lora.safetensors</code></li>
392
- <li><b>File:</b> Use the "Upload" button. The source will be set automatically.</li>
393
- </ul>
394
- </div>
395
- """)
396
- gr.Markdown("""
397
- <div style='background-color: #282828; color: #a0aec0; padding: 10px; border-radius: 5px; margin-bottom: 15px;'>
398
- <b>Notice:</b>
399
- <ul style='margin-bottom: 0;'>
400
- <li>With Gradio, the page may become unresponsive until a file is fully uploaded. Please be patient and wait for the process to complete.</li>
401
- </ul>
402
- </div>
403
- """)
404
- lora_rows, sources, ids, scales, uploads = [], [], [], [], []
405
- for i in range(MAX_LORAS):
406
- with gr.Row(visible=(i == 0)) as row:
407
- source = gr.Dropdown(label=f"LoRA {i+1} Source", choices=LORA_SOURCE_CHOICES, value="Civitai", scale=1)
408
- lora_id = gr.Textbox(label="ID / URL / File", placeholder="e.g.: 133755", scale=2)
409
- scale = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=0.0, scale=2)
410
- upload = gr.UploadButton("Upload", file_types=[".safetensors"], scale=1)
411
- lora_rows.append(row); sources.append(source); ids.append(lora_id); scales.append(scale); uploads.append(upload)
412
- upload.upload(fn=lambda f: (os.path.basename(f.name), "File") if f else (gr.update(), gr.update()), inputs=[upload], outputs=[lora_id, source])
413
- with gr.Row(): add_button = gr.Button("✚ Add LoRA"); delete_button = gr.Button("➖ Delete LoRA", visible=False)
414
- count_state = gr.State(value=1)
415
- all_components = [item for sublist in zip(sources, ids, scales, uploads) for item in sublist]
416
- return (civitai_api_key, tensorart_api_key, lora_rows, sources, ids, scales, uploads, add_button, delete_button, count_state, all_components)
417
 
418
- def download_all_models_on_startup():
419
- """Downloads all base models listed in ALL_MODEL_MAP when the app starts."""
420
- print("--- Starting pre-download of all base models ---")
421
- for model_display_name, model_info in ALL_MODEL_MAP.items():
422
- repo_id, filename, _, _ = model_info
423
- local_file_path = os.path.join(CHECKPOINT_DIR, filename)
 
 
424
 
425
- if os.path.exists(local_file_path):
426
- print(f"✅ Model '{filename}' already exists. Skipping download.")
427
- continue
428
 
429
- try:
430
- print(f"Downloading: {model_display_name} ({filename})...")
431
- hf_hub_download(
432
- repo_id=repo_id,
433
- filename=filename,
434
- local_dir=CHECKPOINT_DIR,
435
- local_dir_use_symlinks=False
436
- )
437
- print(f"✅ Successfully downloaded {filename}.")
438
- except Exception as e:
439
- print(f"❌ Failed to download {filename} from {repo_id}: {e}")
440
- print("--- Finished pre-downloading all base models ---")
441
 
442
- # --- Execute model download on startup ---
443
- download_all_models_on_startup()
 
444
 
445
- # --- Gradio UI ---
446
- with gr.Blocks(css="#col-container {margin: 0 auto; max-width: 1024px;}") as demo:
447
- gr.Markdown("# Animated T2I with LoRAs")
448
- with gr.Tabs(elem_id="tabs_container") as tabs:
449
- with gr.TabItem("txt2img", id=0):
450
- with gr.Tabs() as model_tabs:
451
- for tab_name, model_map, defaults in [
452
- ("Illustrious", MODEL_MAP_ILLUSTRIOUS, {'w': 1024, 'h': 1024, 'cs_vis': False, 'cs_val': 1}),
453
- ("Animagine", MODEL_MAP_ANIMAGINE, {'w': 1024, 'h': 1024, 'cs_vis': False, 'cs_val': 1}),
454
- ("Pony", MODEL_MAP_PONY, {'w': 1024, 'h': 1024, 'cs_vis': False, 'cs_val': 1}),
455
- ("SD1.5", MODEL_MAP_SD15, {'w': 512, 'h': 768, 'cs_vis': True, 'cs_val': 1})
456
- ]:
457
- with gr.TabItem(tab_name):
458
- gr.Markdown("💡 **Tip:** Pre-downloading LoRAs before 'Run' can maximize ZeroGPU time.")
459
- with gr.Column():
460
- with gr.Row():
461
- base_model = gr.Dropdown(label="Base Model", choices=list(model_map.keys()), value=list(model_map.keys())[0], scale=3)
462
- with gr.Column(scale=1): predownload_lora = gr.Button("Pre-download LoRAs"); run = gr.Button("Run", variant="primary")
463
- predownload_status = gr.Markdown("")
464
- prompt = gr.Text(label="Prompt", lines=3, placeholder="Enter your prompt")
465
- neg_prompt = gr.Text(label="Negative prompt", lines=3, value=DEFAULT_NEGATIVE_PROMPT)
466
- with gr.Row():
467
- with gr.Column(scale=2):
468
- with gr.Row(): width = gr.Slider(label="Width", minimum=256, maximum=2048, step=64, value=defaults['w']); height = gr.Slider(label="Height", minimum=256, maximum=2048, step=64, value=defaults['h'])
469
- with gr.Row():
470
- sampler = gr.Dropdown(label="Sampling method", choices=SAMPLER_CHOICES, value=SAMPLER_CHOICES[0])
471
- default_scheduler = 'normal' if 'normal' in SCHEDULER_CHOICES else SCHEDULER_CHOICES[0]
472
- scheduler = gr.Dropdown(label="Scheduler", choices=SCHEDULER_CHOICES, value=default_scheduler)
473
- with gr.Row(): cfg = gr.Slider(label="CFG Scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5); steps = gr.Slider(label="Sampling steps", minimum=1, maximum=50, step=1, value=28)
474
- with gr.Column(scale=1): result = gr.Gallery(label="Result", show_label=False, columns=2, object_fit="contain", height="auto")
475
- with gr.Row():
476
- seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
477
- batch_size = gr.Slider(label="Batch size", minimum=1, maximum=8, step=1, value=1)
478
- clip_skip = gr.Slider(label="Clip Skip", minimum=1, maximum=2, step=1, value=defaults['cs_val'], visible=defaults['cs_vis'])
479
- zero_gpu = gr.Number(label="ZeroGPU Duration (s)", value=None, placeholder="Default: 60s", info="Optional: Leave empty for default (60s), max to 120")
480
- lora_settings = create_lora_settings_ui()
481
-
482
- # Assign specific variables for event handlers
483
- if tab_name == "Illustrious":
484
- base_model_name_input_illustrious, prompt_illustrious, negative_prompt_illustrious, seed_illustrious, batch_size_illustrious, width_illustrious, height_illustrious, guidance_scale_illustrious, num_inference_steps_illustrious, sampler_illustrious, schedule_type_illustrious, zero_gpu_duration_illustrious, result_illustrious = base_model, prompt, neg_prompt, seed, batch_size, width, height, cfg, steps, sampler, scheduler, zero_gpu, result
485
- civitai_api_key_illustrious, tensorart_api_key_illustrious, lora_rows_illustrious, _, lora_id_inputs_illustrious, lora_scale_inputs_illustrious, _, add_lora_button_illustrious, delete_lora_button_illustrious, lora_count_state_illustrious, all_lora_components_flat_illustrious = lora_settings
486
- predownload_lora_button_illustrious, run_button_illustrious, predownload_status_illustrious = predownload_lora, run, predownload_status
487
- elif tab_name == "Animagine":
488
- base_model_name_input_animagine, prompt_animagine, negative_prompt_animagine, seed_animagine, batch_size_animagine, width_animagine, height_animagine, guidance_scale_animagine, num_inference_steps_animagine, sampler_animagine, schedule_type_animagine, zero_gpu_duration_animagine, result_animagine = base_model, prompt, neg_prompt, seed, batch_size, width, height, cfg, steps, sampler, scheduler, zero_gpu, result
489
- civitai_api_key_animagine, tensorart_api_key_animagine, lora_rows_animagine, _, lora_id_inputs_animagine, lora_scale_inputs_animagine, _, add_lora_button_animagine, delete_lora_button_animagine, lora_count_state_animagine, all_lora_components_flat_animagine = lora_settings
490
- predownload_lora_button_animagine, run_button_animagine, predownload_status_animagine = predownload_lora, run, predownload_status
491
- elif tab_name == "Pony":
492
- base_model_name_input_pony, prompt_pony, negative_prompt_pony, seed_pony, batch_size_pony, width_pony, height_pony, guidance_scale_pony, num_inference_steps_pony, sampler_pony, schedule_type_pony, zero_gpu_duration_pony, result_pony = base_model, prompt, neg_prompt, seed, batch_size, width, height, cfg, steps, sampler, scheduler, zero_gpu, result
493
- civitai_api_key_pony, tensorart_api_key_pony, lora_rows_pony, _, lora_id_inputs_pony, lora_scale_inputs_pony, _, add_lora_button_pony, delete_lora_button_pony, lora_count_state_pony, all_lora_components_flat_pony = lora_settings
494
- predownload_lora_button_pony, run_button_pony, predownload_status_pony = predownload_lora, run, predownload_status
495
- elif tab_name == "SD1.5":
496
- base_model_name_input_sd15, prompt_sd15, negative_prompt_sd15, seed_sd15, batch_size_sd15, width_sd15, height_sd15, guidance_scale_sd15, num_inference_steps_sd15, sampler_sd15, schedule_type_sd15, clip_skip_sd15, zero_gpu_duration_sd15, result_sd15 = base_model, prompt, neg_prompt, seed, batch_size, width, height, cfg, steps, sampler, scheduler, clip_skip, zero_gpu, result
497
- civitai_api_key_sd15, tensorart_api_key_sd15, lora_rows_sd15, _, lora_id_inputs_sd15, lora_scale_inputs_sd15, _, add_lora_button_sd15, delete_lora_button_sd15, lora_count_state_sd15, all_lora_components_flat_sd15 = lora_settings
498
- predownload_lora_button_sd15, run_button_sd15, predownload_status_sd15 = predownload_lora, run, predownload_status
499
- with gr.TabItem("PNG Info", id=1):
500
- with gr.Column():
501
- info_image_input = gr.Image(type="pil", label="Upload Image", height=512)
502
- with gr.Row():
503
- info_get_button = gr.Button("Get Info")
504
- send_by_hash_button = gr.Button("Send to txt2img by Model Hash", variant="primary")
505
- with gr.Row():
506
- send_to_illustrious_button = gr.Button("Send to Illustrious")
507
- send_to_animagine_button = gr.Button("Send to Animagine")
508
- send_to_pony_button = gr.Button("Send to Pony")
509
- send_to_sd15_button = gr.Button("Send to SD1.5")
510
- gr.Markdown("### Positive Prompt"); info_prompt_output = gr.Textbox(lines=3, interactive=False, show_label=False)
511
- gr.Markdown("### Negative Prompt"); info_neg_prompt_output = gr.Textbox(lines=3, interactive=False, show_label=False)
512
- gr.Markdown("### Other Parameters"); info_params_output = gr.Textbox(lines=5, interactive=False, show_label=False)
513
- gr.Markdown("<div style='text-align: center; margin-top: 20px;'>Made by <a href='https://civitai.com/user/RioShiina'>RioShiina</a> with ❤️</div>")
514
-
515
- # --- Event Handlers ---
516
- def create_lora_event_handlers(lora_rows, count_state, add_button, del_button, lora_ids, lora_scales):
517
- def add_lora_row(c): return {count_state: c+1, lora_rows[c]: gr.update(visible=True), del_button: gr.update(visible=True), add_button: gr.update(visible=c+1 < MAX_LORAS)}
518
- def del_lora_row(c): c-=1; return {count_state: c, lora_rows[c]: gr.update(visible=False), lora_ids[c]: "", lora_scales[c]: 0.0, add_button: gr.update(visible=True), del_button: gr.update(visible=c > 1)}
519
- add_button.click(add_lora_row, [count_state], [count_state, add_button, del_button, *lora_rows])
520
- del_button.click(del_lora_row, [count_state], [count_state, add_button, del_button, *lora_rows, *lora_ids, *lora_scales])
521
 
522
- create_lora_event_handlers(lora_rows_illustrious, lora_count_state_illustrious, add_lora_button_illustrious, delete_lora_button_illustrious, lora_id_inputs_illustrious, lora_scale_inputs_illustrious)
523
- predownload_lora_button_illustrious.click(lambda: "⏳ Downloading...", None, [predownload_status_illustrious]).then(pre_download_loras, [civitai_api_key_illustrious, tensorart_api_key_illustrious, *all_lora_components_flat_illustrious], [predownload_status_illustrious])
524
- run_button_illustrious.click(generate_image_wrapper, [base_model_name_input_illustrious, prompt_illustrious, negative_prompt_illustrious, seed_illustrious, batch_size_illustrious, width_illustrious, height_illustrious, guidance_scale_illustrious, num_inference_steps_illustrious, sampler_illustrious, schedule_type_illustrious, zero_gpu_duration_illustrious, civitai_api_key_illustrious, tensorart_api_key_illustrious, *all_lora_components_flat_illustrious], [result_illustrious])
525
-
526
- create_lora_event_handlers(lora_rows_animagine, lora_count_state_animagine, add_lora_button_animagine, delete_lora_button_animagine, lora_id_inputs_animagine, lora_scale_inputs_animagine)
527
- predownload_lora_button_animagine.click(lambda: "⏳ Downloading...", None, [predownload_status_animagine]).then(pre_download_loras, [civitai_api_key_animagine, tensorart_api_key_animagine, *all_lora_components_flat_animagine], [predownload_status_animagine])
528
- run_button_animagine.click(generate_image_wrapper, [base_model_name_input_animagine, prompt_animagine, negative_prompt_animagine, seed_animagine, batch_size_animagine, width_animagine, height_animagine, guidance_scale_animagine, num_inference_steps_animagine, sampler_animagine, schedule_type_animagine, zero_gpu_duration_animagine, civitai_api_key_animagine, tensorart_api_key_animagine, *all_lora_components_flat_animagine], [result_animagine])
529
 
530
- create_lora_event_handlers(lora_rows_pony, lora_count_state_pony, add_lora_button_pony, delete_lora_button_pony, lora_id_inputs_pony, lora_scale_inputs_pony)
531
- predownload_lora_button_pony.click(lambda: "⏳ Downloading...", None, [predownload_status_pony]).then(pre_download_loras, [civitai_api_key_pony, tensorart_api_key_pony, *all_lora_components_flat_pony], [predownload_status_pony])
532
- run_button_pony.click(generate_image_wrapper, [base_model_name_input_pony, prompt_pony, negative_prompt_pony, seed_pony, batch_size_pony, width_pony, height_pony, guidance_scale_pony, num_inference_steps_pony, sampler_pony, schedule_type_pony, zero_gpu_duration_pony, civitai_api_key_pony, tensorart_api_key_pony, *all_lora_components_flat_pony], [result_pony])
533
-
534
- create_lora_event_handlers(lora_rows_sd15, lora_count_state_sd15, add_lora_button_sd15, delete_lora_button_sd15, lora_id_inputs_sd15, lora_scale_inputs_sd15)
535
- predownload_lora_button_sd15.click(lambda: "⏳ Downloading...", None, [predownload_status_sd15]).then(pre_download_loras, [civitai_api_key_sd15, tensorart_api_key_sd15, *all_lora_components_flat_sd15], [predownload_status_sd15])
536
- run_button_sd15.click(generate_image_wrapper, [base_model_name_input_sd15, prompt_sd15, negative_prompt_sd15, seed_sd15, batch_size_sd15, width_sd15, height_sd15, guidance_scale_sd15, num_inference_steps_sd15, sampler_sd15, schedule_type_sd15, zero_gpu_duration_sd15, civitai_api_key_sd15, tensorart_api_key_sd15, *all_lora_components_flat_sd15, clip_skip_sd15], [result_sd15])
537
-
538
- info_get_button.click(get_png_info, [info_image_input], [info_prompt_output, info_neg_prompt_output, info_params_output])
539
- all_ui_components = [
540
- base_model_name_input_illustrious, prompt_illustrious, negative_prompt_illustrious, seed_illustrious, width_illustrious, height_illustrious, guidance_scale_illustrious, num_inference_steps_illustrious, sampler_illustrious, schedule_type_illustrious,
541
- base_model_name_input_animagine, prompt_animagine, negative_prompt_animagine, seed_animagine, width_animagine, height_animagine, guidance_scale_animagine, num_inference_steps_animagine, sampler_animagine, schedule_type_animagine,
542
- base_model_name_input_pony, prompt_pony, negative_prompt_pony, seed_pony, width_pony, height_pony, guidance_scale_pony, num_inference_steps_pony, sampler_pony, schedule_type_pony,
543
- base_model_name_input_sd15, prompt_sd15, negative_prompt_sd15, seed_sd15, width_sd15, height_sd15, guidance_scale_sd15, num_inference_steps_sd15, sampler_sd15, schedule_type_sd15, clip_skip_sd15,
544
- tabs, model_tabs
545
- ]
546
- send_to_illustrious_button.click(lambda img: send_info_to_tab(img, "Illustrious"), [info_image_input], all_ui_components)
547
- send_to_animagine_button.click(lambda img: send_info_to_tab(img, "Animagine"), [info_image_input], all_ui_components)
548
- send_to_pony_button.click(lambda img: send_info_to_tab(img, "Pony"), [info_image_input], all_ui_components)
549
- send_to_sd15_button.click(lambda img: send_info_to_tab(img, "SD1.5"), [info_image_input], all_ui_components)
550
- send_by_hash_button.click(send_info_by_hash, [info_image_input], all_ui_components)
551
 
552
  if __name__ == "__main__":
553
- demo.queue().launch()
 
1
+ import spaces
2
  import os
 
3
  import sys
 
 
 
 
 
 
 
 
4
  import requests
5
+ import site
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ APP_DIR = os.path.dirname(os.path.abspath(__file__))
8
+ if APP_DIR not in sys.path:
9
+ sys.path.insert(0, APP_DIR)
10
+ print(f"✅ Added project root '{APP_DIR}' to sys.path.")
 
11
 
12
+ SAGE_PATCH_APPLIED = False
 
 
 
 
 
 
 
13
 
14
+ def apply_sage_attention_patch():
15
+ global SAGE_PATCH_APPLIED
16
+ if SAGE_PATCH_APPLIED:
17
+ return "SageAttention patch already applied."
 
 
 
 
 
 
 
 
 
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  try:
20
+ from comfy import model_management
21
+ import sageattention
22
+
23
+ print("--- [Runtime Patch] sageattention package found. Applying patch... ---")
24
+ model_management.sage_attention_enabled = lambda: True
25
+ model_management.pytorch_attention_enabled = lambda: False
26
+
27
+ SAGE_PATCH_APPLIED = True
28
+ return "✅ Successfully enabled SageAttention."
29
+ except ImportError:
30
+ SAGE_PATCH_APPLIED = False
31
+ msg = "--- [Runtime Patch] ⚠️ sageattention package not found. Continuing with default attention. ---"
32
+ print(msg)
33
+ return msg
 
 
 
 
 
 
 
34
  except Exception as e:
35
+ SAGE_PATCH_APPLIED = False
36
+ msg = f"--- [Runtime Patch] ❌ An error occurred while applying SageAttention patch: {e} ---"
37
+ print(msg)
38
+ return msg
39
 
40
+ @spaces.GPU
41
+ def dummy_gpu_for_startup():
42
+ print("--- [GPU Startup] Dummy function for startup check initiated. ---")
43
+ # SageAttention patch temporarily disabled for faster iteration.
44
+ # patch_result = apply_sage_attention_patch()
45
+ # print(f"--- [GPU Startup] {patch_result} ---")
46
+ print("--- [GPU Startup] Startup check passed. ---")
47
+ return "Startup check passed."
 
 
 
 
 
48
 
49
+ def main():
50
+ from utils.app_utils import print_welcome_message
51
+ # from scripts import build_sage_attention # SageAttention disabled
 
 
 
52
 
53
+ print_welcome_message()
 
 
 
 
 
 
 
 
54
 
55
+ # SageAttention build is temporarily disabled for faster iteration.
56
+ # print("--- [Setup] Attempting to build and install SageAttention... ---")
57
+ # try:
58
+ # build_sage_attention.install_sage_attention()
59
+ # print("--- [Setup] ✅ SageAttention installation process finished. ---")
60
+ # except Exception as e:
61
+ # print(f"--- [Setup] ❌ SageAttention installation failed: {e}. Continuing with default attention. ---")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
+ print("--- [Setup] Reloading site-packages to detect newly installed packages... ---")
 
 
 
 
65
  try:
66
+ site.main()
67
+ print("--- [Setup] ✅ Site-packages reloaded. ---")
68
+ except Exception as e:
69
+ print(f"--- [Setup] ⚠️ Warning: Could not fully reload site-packages: {e} ---")
70
+
71
+ from comfy_integration import setup as setup_comfyui
72
+ from utils.app_utils import (
73
+ build_preprocessor_model_map,
74
+ build_preprocessor_parameter_map,
75
+ load_ipadapter_presets
76
+ )
77
+ from core import shared_state
78
+ from core.settings import ALL_MODEL_MAP
79
+
80
+ def check_all_model_urls_on_startup():
81
+ print("--- [Setup] Checking all model URL validity (one-time check) ---")
82
+ for display_name, model_info in ALL_MODEL_MAP.items():
83
+ repo_id, filename, _, _ = model_info
84
+ if not repo_id: continue
85
+ url = f"https://huggingface.co/{repo_id}/resolve/main/{filename}"
86
+ try:
87
+ response = requests.head(url, timeout=5, allow_redirects=True)
88
+ if response.status_code >= 400:
89
+ print(f"❌ Invalid URL for '{display_name}': {url} (Status: {response.status_code})")
90
+ shared_state.INVALID_MODEL_URLS[display_name] = True
91
+ except requests.RequestException as e:
92
+ print(f"❌ URL check failed for '{display_name}': {e}")
93
+ shared_state.INVALID_MODEL_URLS[display_name] = True
94
+ print("--- [Setup] ✅ Finished checking model URLs. ---")
95
+
96
+ print("--- Starting Application Setup ---")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ setup_comfyui.initialize_comfyui()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ check_all_model_urls_on_startup()
101
+
102
+ print("--- Building ControlNet preprocessor maps ---")
103
+ from core.generation_logic import build_reverse_map
104
+ build_reverse_map()
105
+ build_preprocessor_model_map()
106
+ build_preprocessor_parameter_map()
107
+ print("--- ✅ ControlNet preprocessor setup complete. ---")
108
 
109
+ print("--- Loading IPAdapter presets ---")
110
+ load_ipadapter_presets()
111
+ print("--- ✅ IPAdapter setup complete. ---")
112
 
 
 
 
 
 
 
 
 
 
 
 
 
113
 
114
+ print("--- Environment configured. Proceeding with module imports. ---")
115
+ from ui.layout import build_ui
116
+ from ui.events import attach_event_handlers
117
 
118
+ print(f"✅ Working directory is stable: {os.getcwd()}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
+ demo = build_ui(attach_event_handlers)
121
+
122
+ print("--- Launching Gradio Interface ---")
123
+ demo.queue().launch(server_name="0.0.0.0", server_port=7860)
 
 
 
124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
  if __name__ == "__main__":
127
+ main()
app/app_settings.py DELETED
@@ -1,65 +0,0 @@
1
- import os
2
- import json
3
- from aiohttp import web
4
- import logging
5
-
6
-
7
- class AppSettings():
8
- def __init__(self, user_manager):
9
- self.user_manager = user_manager
10
-
11
- def get_settings(self, request):
12
- try:
13
- file = self.user_manager.get_request_user_filepath(
14
- request,
15
- "comfy.settings.json"
16
- )
17
- except KeyError as e:
18
- logging.error("User settings not found.")
19
- raise web.HTTPUnauthorized() from e
20
- if os.path.isfile(file):
21
- try:
22
- with open(file) as f:
23
- return json.load(f)
24
- except:
25
- logging.error(f"The user settings file is corrupted: {file}")
26
- return {}
27
- else:
28
- return {}
29
-
30
- def save_settings(self, request, settings):
31
- file = self.user_manager.get_request_user_filepath(
32
- request, "comfy.settings.json")
33
- with open(file, "w") as f:
34
- f.write(json.dumps(settings, indent=4))
35
-
36
- def add_routes(self, routes):
37
- @routes.get("/settings")
38
- async def get_settings(request):
39
- return web.json_response(self.get_settings(request))
40
-
41
- @routes.get("/settings/{id}")
42
- async def get_setting(request):
43
- value = None
44
- settings = self.get_settings(request)
45
- setting_id = request.match_info.get("id", None)
46
- if setting_id and setting_id in settings:
47
- value = settings[setting_id]
48
- return web.json_response(value)
49
-
50
- @routes.post("/settings")
51
- async def post_settings(request):
52
- settings = self.get_settings(request)
53
- new_settings = await request.json()
54
- self.save_settings(request, {**settings, **new_settings})
55
- return web.Response(status=200)
56
-
57
- @routes.post("/settings/{id}")
58
- async def post_setting(request):
59
- setting_id = request.match_info.get("id", None)
60
- if not setting_id:
61
- return web.Response(status=400)
62
- settings = self.get_settings(request)
63
- settings[setting_id] = await request.json()
64
- self.save_settings(request, settings)
65
- return web.Response(status=200)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/custom_node_manager.py DELETED
@@ -1,145 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import os
4
- import folder_paths
5
- import glob
6
- from aiohttp import web
7
- import json
8
- import logging
9
- from functools import lru_cache
10
-
11
- from utils.json_util import merge_json_recursive
12
-
13
-
14
- # Extra locale files to load into main.json
15
- EXTRA_LOCALE_FILES = [
16
- "nodeDefs.json",
17
- "commands.json",
18
- "settings.json",
19
- ]
20
-
21
-
22
- def safe_load_json_file(file_path: str) -> dict:
23
- if not os.path.exists(file_path):
24
- return {}
25
-
26
- try:
27
- with open(file_path, "r", encoding="utf-8") as f:
28
- return json.load(f)
29
- except json.JSONDecodeError:
30
- logging.error(f"Error loading {file_path}")
31
- return {}
32
-
33
-
34
- class CustomNodeManager:
35
- @lru_cache(maxsize=1)
36
- def build_translations(self):
37
- """Load all custom nodes translations during initialization. Translations are
38
- expected to be loaded from `locales/` folder.
39
-
40
- The folder structure is expected to be the following:
41
- - custom_nodes/
42
- - custom_node_1/
43
- - locales/
44
- - en/
45
- - main.json
46
- - commands.json
47
- - settings.json
48
-
49
- returned translations are expected to be in the following format:
50
- {
51
- "en": {
52
- "nodeDefs": {...},
53
- "commands": {...},
54
- "settings": {...},
55
- ...{other main.json keys}
56
- }
57
- }
58
- """
59
-
60
- translations = {}
61
-
62
- for folder in folder_paths.get_folder_paths("custom_nodes"):
63
- # Sort glob results for deterministic ordering
64
- for custom_node_dir in sorted(glob.glob(os.path.join(folder, "*/"))):
65
- locales_dir = os.path.join(custom_node_dir, "locales")
66
- if not os.path.exists(locales_dir):
67
- continue
68
-
69
- for lang_dir in glob.glob(os.path.join(locales_dir, "*/")):
70
- lang_code = os.path.basename(os.path.dirname(lang_dir))
71
-
72
- if lang_code not in translations:
73
- translations[lang_code] = {}
74
-
75
- # Load main.json
76
- main_file = os.path.join(lang_dir, "main.json")
77
- node_translations = safe_load_json_file(main_file)
78
-
79
- # Load extra locale files
80
- for extra_file in EXTRA_LOCALE_FILES:
81
- extra_file_path = os.path.join(lang_dir, extra_file)
82
- key = extra_file.split(".")[0]
83
- json_data = safe_load_json_file(extra_file_path)
84
- if json_data:
85
- node_translations[key] = json_data
86
-
87
- if node_translations:
88
- translations[lang_code] = merge_json_recursive(
89
- translations[lang_code], node_translations
90
- )
91
-
92
- return translations
93
-
94
- def add_routes(self, routes, webapp, loadedModules):
95
-
96
- example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
97
-
98
- @routes.get("/workflow_templates")
99
- async def get_workflow_templates(request):
100
- """Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
101
-
102
- files = []
103
-
104
- for folder in folder_paths.get_folder_paths("custom_nodes"):
105
- for folder_name in example_workflow_folder_names:
106
- pattern = os.path.join(folder, f"*/{folder_name}/*.json")
107
- matched_files = glob.glob(pattern)
108
- files.extend(matched_files)
109
-
110
- workflow_templates_dict = (
111
- {}
112
- ) # custom_nodes folder name -> example workflow names
113
- for file in files:
114
- custom_nodes_name = os.path.basename(
115
- os.path.dirname(os.path.dirname(file))
116
- )
117
- workflow_name = os.path.splitext(os.path.basename(file))[0]
118
- workflow_templates_dict.setdefault(custom_nodes_name, []).append(
119
- workflow_name
120
- )
121
- return web.json_response(workflow_templates_dict)
122
-
123
- # Serve workflow templates from custom nodes.
124
- for module_name, module_dir in loadedModules:
125
- for folder_name in example_workflow_folder_names:
126
- workflows_dir = os.path.join(module_dir, folder_name)
127
-
128
- if os.path.exists(workflows_dir):
129
- if folder_name != "example_workflows":
130
- logging.debug(
131
- "Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
132
- folder_name, module_name)
133
-
134
- webapp.add_routes(
135
- [
136
- web.static(
137
- "/api/workflow_templates/" + module_name, workflows_dir
138
- )
139
- ]
140
- )
141
-
142
- @routes.get("/i18n")
143
- async def get_i18n(request):
144
- """Returns translations from all custom nodes' locales folders."""
145
- return web.json_response(self.build_translations())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/database/db.py DELETED
@@ -1,112 +0,0 @@
1
- import logging
2
- import os
3
- import shutil
4
- from app.logger import log_startup_warning
5
- from utils.install_util import get_missing_requirements_message
6
- from comfy.cli_args import args
7
-
8
- _DB_AVAILABLE = False
9
- Session = None
10
-
11
-
12
- try:
13
- from alembic import command
14
- from alembic.config import Config
15
- from alembic.runtime.migration import MigrationContext
16
- from alembic.script import ScriptDirectory
17
- from sqlalchemy import create_engine
18
- from sqlalchemy.orm import sessionmaker
19
-
20
- _DB_AVAILABLE = True
21
- except ImportError as e:
22
- log_startup_warning(
23
- f"""
24
- ------------------------------------------------------------------------
25
- Error importing dependencies: {e}
26
- {get_missing_requirements_message()}
27
- This error is happening because ComfyUI now uses a local sqlite database.
28
- ------------------------------------------------------------------------
29
- """.strip()
30
- )
31
-
32
-
33
- def dependencies_available():
34
- """
35
- Temporary function to check if the dependencies are available
36
- """
37
- return _DB_AVAILABLE
38
-
39
-
40
- def can_create_session():
41
- """
42
- Temporary function to check if the database is available to create a session
43
- During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
44
- """
45
- return dependencies_available() and Session is not None
46
-
47
-
48
- def get_alembic_config():
49
- root_path = os.path.join(os.path.dirname(__file__), "../..")
50
- config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
51
- scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
52
-
53
- config = Config(config_path)
54
- config.set_main_option("script_location", scripts_path)
55
- config.set_main_option("sqlalchemy.url", args.database_url)
56
-
57
- return config
58
-
59
-
60
- def get_db_path():
61
- url = args.database_url
62
- if url.startswith("sqlite:///"):
63
- return url.split("///")[1]
64
- else:
65
- raise ValueError(f"Unsupported database URL '{url}'.")
66
-
67
-
68
- def init_db():
69
- db_url = args.database_url
70
- logging.debug(f"Database URL: {db_url}")
71
- db_path = get_db_path()
72
- db_exists = os.path.exists(db_path)
73
-
74
- config = get_alembic_config()
75
-
76
- # Check if we need to upgrade
77
- engine = create_engine(db_url)
78
- conn = engine.connect()
79
-
80
- context = MigrationContext.configure(conn)
81
- current_rev = context.get_current_revision()
82
-
83
- script = ScriptDirectory.from_config(config)
84
- target_rev = script.get_current_head()
85
-
86
- if target_rev is None:
87
- logging.warning("No target revision found.")
88
- elif current_rev != target_rev:
89
- # Backup the database pre upgrade
90
- backup_path = db_path + ".bkp"
91
- if db_exists:
92
- shutil.copy(db_path, backup_path)
93
- else:
94
- backup_path = None
95
-
96
- try:
97
- command.upgrade(config, target_rev)
98
- logging.info(f"Database upgraded from {current_rev} to {target_rev}")
99
- except Exception as e:
100
- if backup_path:
101
- # Restore the database from backup if upgrade fails
102
- shutil.copy(backup_path, db_path)
103
- os.remove(backup_path)
104
- logging.exception("Error upgrading database: ")
105
- raise e
106
-
107
- global Session
108
- Session = sessionmaker(bind=engine)
109
-
110
-
111
- def create_session():
112
- return Session()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/database/models.py DELETED
@@ -1,14 +0,0 @@
1
- from sqlalchemy.orm import declarative_base
2
-
3
- Base = declarative_base()
4
-
5
-
6
- def to_dict(obj):
7
- fields = obj.__table__.columns.keys()
8
- return {
9
- field: (val.to_dict() if hasattr(val, "to_dict") else val)
10
- for field in fields
11
- if (val := getattr(obj, field))
12
- }
13
-
14
- # TODO: Define models here
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/frontend_management.py DELETED
@@ -1,361 +0,0 @@
1
- from __future__ import annotations
2
- import argparse
3
- import logging
4
- import os
5
- import re
6
- import sys
7
- import tempfile
8
- import zipfile
9
- import importlib
10
- from dataclasses import dataclass
11
- from functools import cached_property
12
- from pathlib import Path
13
- from typing import TypedDict, Optional
14
- from importlib.metadata import version
15
-
16
- import requests
17
- from typing_extensions import NotRequired
18
-
19
- from utils.install_util import get_missing_requirements_message, requirements_path
20
-
21
- from comfy.cli_args import DEFAULT_VERSION_STRING
22
- import app.logger
23
-
24
-
25
- def frontend_install_warning_message():
26
- return f"""
27
- {get_missing_requirements_message()}
28
-
29
- This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
30
- """.strip()
31
-
32
- def parse_version(version: str) -> tuple[int, int, int]:
33
- return tuple(map(int, version.split(".")))
34
-
35
- def is_valid_version(version: str) -> bool:
36
- """Validate if a string is a valid semantic version (X.Y.Z format)."""
37
- pattern = r"^(\d+)\.(\d+)\.(\d+)$"
38
- return bool(re.match(pattern, version))
39
-
40
- def get_installed_frontend_version():
41
- """Get the currently installed frontend package version."""
42
- frontend_version_str = version("comfyui-frontend-package")
43
- return frontend_version_str
44
-
45
- def get_required_frontend_version():
46
- """Get the required frontend version from requirements.txt."""
47
- try:
48
- with open(requirements_path, "r", encoding="utf-8") as f:
49
- for line in f:
50
- line = line.strip()
51
- if line.startswith("comfyui-frontend-package=="):
52
- version_str = line.split("==")[-1]
53
- if not is_valid_version(version_str):
54
- logging.error(f"Invalid version format in requirements.txt: {version_str}")
55
- return None
56
- return version_str
57
- logging.error("comfyui-frontend-package not found in requirements.txt")
58
- return None
59
- except FileNotFoundError:
60
- logging.error("requirements.txt not found. Cannot determine required frontend version.")
61
- return None
62
- except Exception as e:
63
- logging.error(f"Error reading requirements.txt: {e}")
64
- return None
65
-
66
- def check_frontend_version():
67
- """Check if the frontend version is up to date."""
68
-
69
- try:
70
- frontend_version_str = get_installed_frontend_version()
71
- frontend_version = parse_version(frontend_version_str)
72
- required_frontend_str = get_required_frontend_version()
73
- required_frontend = parse_version(required_frontend_str)
74
- if frontend_version < required_frontend:
75
- app.logger.log_startup_warning(
76
- f"""
77
- ________________________________________________________________________
78
- WARNING WARNING WARNING WARNING WARNING
79
-
80
- Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
81
-
82
- {frontend_install_warning_message()}
83
- ________________________________________________________________________
84
- """.strip()
85
- )
86
- else:
87
- logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
88
- except Exception as e:
89
- logging.error(f"Failed to check frontend version: {e}")
90
-
91
-
92
- REQUEST_TIMEOUT = 10 # seconds
93
-
94
-
95
- class Asset(TypedDict):
96
- url: str
97
-
98
-
99
- class Release(TypedDict):
100
- id: int
101
- tag_name: str
102
- name: str
103
- prerelease: bool
104
- created_at: str
105
- published_at: str
106
- body: str
107
- assets: NotRequired[list[Asset]]
108
-
109
-
110
- @dataclass
111
- class FrontEndProvider:
112
- owner: str
113
- repo: str
114
-
115
- @property
116
- def folder_name(self) -> str:
117
- return f"{self.owner}_{self.repo}"
118
-
119
- @property
120
- def release_url(self) -> str:
121
- return f"https://api.github.com/repos/{self.owner}/{self.repo}/releases"
122
-
123
- @cached_property
124
- def all_releases(self) -> list[Release]:
125
- releases = []
126
- api_url = self.release_url
127
- while api_url:
128
- response = requests.get(api_url, timeout=REQUEST_TIMEOUT)
129
- response.raise_for_status() # Raises an HTTPError if the response was an error
130
- releases.extend(response.json())
131
- # GitHub uses the Link header to provide pagination links. Check if it exists and update api_url accordingly.
132
- if "next" in response.links:
133
- api_url = response.links["next"]["url"]
134
- else:
135
- api_url = None
136
- return releases
137
-
138
- @cached_property
139
- def latest_release(self) -> Release:
140
- latest_release_url = f"{self.release_url}/latest"
141
- response = requests.get(latest_release_url, timeout=REQUEST_TIMEOUT)
142
- response.raise_for_status() # Raises an HTTPError if the response was an error
143
- return response.json()
144
-
145
- @cached_property
146
- def latest_prerelease(self) -> Release:
147
- """Get the latest pre-release version - even if it's older than the latest release"""
148
- release = [release for release in self.all_releases if release["prerelease"]]
149
-
150
- if not release:
151
- raise ValueError("No pre-releases found")
152
-
153
- # GitHub returns releases in reverse chronological order, so first is latest
154
- return release[0]
155
-
156
- def get_release(self, version: str) -> Release:
157
- if version == "latest":
158
- return self.latest_release
159
- elif version == "prerelease":
160
- return self.latest_prerelease
161
- else:
162
- for release in self.all_releases:
163
- if release["tag_name"] in [version, f"v{version}"]:
164
- return release
165
- raise ValueError(f"Version {version} not found in releases")
166
-
167
-
168
- def download_release_asset_zip(release: Release, destination_path: str) -> None:
169
- """Download dist.zip from github release."""
170
- asset_url = None
171
- for asset in release.get("assets", []):
172
- if asset["name"] == "dist.zip":
173
- asset_url = asset["url"]
174
- break
175
-
176
- if not asset_url:
177
- raise ValueError("dist.zip not found in the release assets")
178
-
179
- # Use a temporary file to download the zip content
180
- with tempfile.TemporaryFile() as tmp_file:
181
- headers = {"Accept": "application/octet-stream"}
182
- response = requests.get(
183
- asset_url, headers=headers, allow_redirects=True, timeout=REQUEST_TIMEOUT
184
- )
185
- response.raise_for_status() # Ensure we got a successful response
186
-
187
- # Write the content to the temporary file
188
- tmp_file.write(response.content)
189
-
190
- # Go back to the beginning of the temporary file
191
- tmp_file.seek(0)
192
-
193
- # Extract the zip file content to the destination path
194
- with zipfile.ZipFile(tmp_file, "r") as zip_ref:
195
- zip_ref.extractall(destination_path)
196
-
197
-
198
- class FrontendManager:
199
- CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
200
-
201
- @classmethod
202
- def get_required_frontend_version(cls) -> str:
203
- """Get the required frontend package version."""
204
- return get_required_frontend_version()
205
-
206
- @classmethod
207
- def default_frontend_path(cls) -> str:
208
- try:
209
- import comfyui_frontend_package
210
-
211
- return str(importlib.resources.files(comfyui_frontend_package) / "static")
212
- except ImportError:
213
- logging.error(
214
- f"""
215
- ********** ERROR ***********
216
-
217
- comfyui-frontend-package is not installed.
218
-
219
- {frontend_install_warning_message()}
220
-
221
- ********** ERROR ***********
222
- """.strip()
223
- )
224
- sys.exit(-1)
225
-
226
- @classmethod
227
- def templates_path(cls) -> str:
228
- try:
229
- import comfyui_workflow_templates
230
-
231
- return str(
232
- importlib.resources.files(comfyui_workflow_templates) / "templates"
233
- )
234
- except ImportError:
235
- logging.error(
236
- f"""
237
- ********** ERROR ***********
238
-
239
- comfyui-workflow-templates is not installed.
240
-
241
- {frontend_install_warning_message()}
242
-
243
- ********** ERROR ***********
244
- """.strip()
245
- )
246
-
247
- @classmethod
248
- def embedded_docs_path(cls) -> str:
249
- """Get the path to embedded documentation"""
250
- try:
251
- import comfyui_embedded_docs
252
-
253
- return str(
254
- importlib.resources.files(comfyui_embedded_docs) / "docs"
255
- )
256
- except ImportError:
257
- logging.info("comfyui-embedded-docs package not found")
258
- return None
259
-
260
- @classmethod
261
- def parse_version_string(cls, value: str) -> tuple[str, str, str]:
262
- """
263
- Args:
264
- value (str): The version string to parse.
265
-
266
- Returns:
267
- tuple[str, str]: A tuple containing provider name and version.
268
-
269
- Raises:
270
- argparse.ArgumentTypeError: If the version string is invalid.
271
- """
272
- VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
273
- match_result = re.match(VERSION_PATTERN, value)
274
- if match_result is None:
275
- raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
276
-
277
- return match_result.group(1), match_result.group(2), match_result.group(3)
278
-
279
- @classmethod
280
- def init_frontend_unsafe(
281
- cls, version_string: str, provider: Optional[FrontEndProvider] = None
282
- ) -> str:
283
- """
284
- Initializes the frontend for the specified version.
285
-
286
- Args:
287
- version_string (str): The version string.
288
- provider (FrontEndProvider, optional): The provider to use. Defaults to None.
289
-
290
- Returns:
291
- str: The path to the initialized frontend.
292
-
293
- Raises:
294
- Exception: If there is an error during the initialization process.
295
- main error source might be request timeout or invalid URL.
296
- """
297
- if version_string == DEFAULT_VERSION_STRING:
298
- check_frontend_version()
299
- return cls.default_frontend_path()
300
-
301
- repo_owner, repo_name, version = cls.parse_version_string(version_string)
302
-
303
- if version.startswith("v"):
304
- expected_path = str(
305
- Path(cls.CUSTOM_FRONTENDS_ROOT)
306
- / f"{repo_owner}_{repo_name}"
307
- / version.lstrip("v")
308
- )
309
- if os.path.exists(expected_path):
310
- logging.info(
311
- f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
312
- )
313
- return expected_path
314
-
315
- logging.info(
316
- f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
317
- )
318
-
319
- provider = provider or FrontEndProvider(repo_owner, repo_name)
320
- release = provider.get_release(version)
321
-
322
- semantic_version = release["tag_name"].lstrip("v")
323
- web_root = str(
324
- Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
325
- )
326
- if not os.path.exists(web_root):
327
- try:
328
- os.makedirs(web_root, exist_ok=True)
329
- logging.info(
330
- "Downloading frontend(%s) version(%s) to (%s)",
331
- provider.folder_name,
332
- semantic_version,
333
- web_root,
334
- )
335
- logging.debug(release)
336
- download_release_asset_zip(release, destination_path=web_root)
337
- finally:
338
- # Clean up the directory if it is empty, i.e. the download failed
339
- if not os.listdir(web_root):
340
- os.rmdir(web_root)
341
-
342
- return web_root
343
-
344
- @classmethod
345
- def init_frontend(cls, version_string: str) -> str:
346
- """
347
- Initializes the frontend with the specified version string.
348
-
349
- Args:
350
- version_string (str): The version string to initialize the frontend with.
351
-
352
- Returns:
353
- str: The path of the initialized frontend.
354
- """
355
- try:
356
- return cls.init_frontend_unsafe(version_string)
357
- except Exception as e:
358
- logging.error("Failed to initialize frontend: %s", e)
359
- logging.info("Falling back to the default frontend.")
360
- check_frontend_version()
361
- return cls.default_frontend_path()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/logger.py DELETED
@@ -1,98 +0,0 @@
1
- from collections import deque
2
- from datetime import datetime
3
- import io
4
- import logging
5
- import sys
6
- import threading
7
-
8
- logs = None
9
- stdout_interceptor = None
10
- stderr_interceptor = None
11
-
12
-
13
- class LogInterceptor(io.TextIOWrapper):
14
- def __init__(self, stream, *args, **kwargs):
15
- buffer = stream.buffer
16
- encoding = stream.encoding
17
- super().__init__(buffer, *args, **kwargs, encoding=encoding, line_buffering=stream.line_buffering)
18
- self._lock = threading.Lock()
19
- self._flush_callbacks = []
20
- self._logs_since_flush = []
21
-
22
- def write(self, data):
23
- entry = {"t": datetime.now().isoformat(), "m": data}
24
- with self._lock:
25
- self._logs_since_flush.append(entry)
26
-
27
- # Simple handling for cr to overwrite the last output if it isnt a full line
28
- # else logs just get full of progress messages
29
- if isinstance(data, str) and data.startswith("\r") and not logs[-1]["m"].endswith("\n"):
30
- logs.pop()
31
- logs.append(entry)
32
- super().write(data)
33
-
34
- def flush(self):
35
- super().flush()
36
- for cb in self._flush_callbacks:
37
- cb(self._logs_since_flush)
38
- self._logs_since_flush = []
39
-
40
- def on_flush(self, callback):
41
- self._flush_callbacks.append(callback)
42
-
43
-
44
- def get_logs():
45
- return logs
46
-
47
-
48
- def on_flush(callback):
49
- if stdout_interceptor is not None:
50
- stdout_interceptor.on_flush(callback)
51
- if stderr_interceptor is not None:
52
- stderr_interceptor.on_flush(callback)
53
-
54
- def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool = False):
55
- global logs
56
- if logs:
57
- return
58
-
59
- # Override output streams and log to buffer
60
- logs = deque(maxlen=capacity)
61
-
62
- global stdout_interceptor
63
- global stderr_interceptor
64
- stdout_interceptor = sys.stdout = LogInterceptor(sys.stdout)
65
- stderr_interceptor = sys.stderr = LogInterceptor(sys.stderr)
66
-
67
- # Setup default global logger
68
- logger = logging.getLogger()
69
- logger.setLevel(log_level)
70
-
71
- stream_handler = logging.StreamHandler()
72
- stream_handler.setFormatter(logging.Formatter("%(message)s"))
73
-
74
- if use_stdout:
75
- # Only errors and critical to stderr
76
- stream_handler.addFilter(lambda record: not record.levelno < logging.ERROR)
77
-
78
- # Lesser to stdout
79
- stdout_handler = logging.StreamHandler(sys.stdout)
80
- stdout_handler.setFormatter(logging.Formatter("%(message)s"))
81
- stdout_handler.addFilter(lambda record: record.levelno < logging.ERROR)
82
- logger.addHandler(stdout_handler)
83
-
84
- logger.addHandler(stream_handler)
85
-
86
-
87
- STARTUP_WARNINGS = []
88
-
89
-
90
- def log_startup_warning(msg):
91
- logging.warning(msg)
92
- STARTUP_WARNINGS.append(msg)
93
-
94
-
95
- def print_startup_warnings():
96
- for s in STARTUP_WARNINGS:
97
- logging.warning(s)
98
- STARTUP_WARNINGS.clear()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/model_manager.py DELETED
@@ -1,195 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import os
4
- import base64
5
- import json
6
- import time
7
- import logging
8
- import folder_paths
9
- import glob
10
- import comfy.utils
11
- from aiohttp import web
12
- from PIL import Image
13
- from io import BytesIO
14
- from folder_paths import map_legacy, filter_files_extensions, filter_files_content_types
15
-
16
-
17
- class ModelFileManager:
18
- def __init__(self) -> None:
19
- self.cache: dict[str, tuple[list[dict], dict[str, float], float]] = {}
20
-
21
- def get_cache(self, key: str, default=None) -> tuple[list[dict], dict[str, float], float] | None:
22
- return self.cache.get(key, default)
23
-
24
- def set_cache(self, key: str, value: tuple[list[dict], dict[str, float], float]):
25
- self.cache[key] = value
26
-
27
- def clear_cache(self):
28
- self.cache.clear()
29
-
30
- def add_routes(self, routes):
31
- # NOTE: This is an experiment to replace `/models`
32
- @routes.get("/experiment/models")
33
- async def get_model_folders(request):
34
- model_types = list(folder_paths.folder_names_and_paths.keys())
35
- folder_black_list = ["configs", "custom_nodes"]
36
- output_folders: list[dict] = []
37
- for folder in model_types:
38
- if folder in folder_black_list:
39
- continue
40
- output_folders.append({"name": folder, "folders": folder_paths.get_folder_paths(folder)})
41
- return web.json_response(output_folders)
42
-
43
- # NOTE: This is an experiment to replace `/models/{folder}`
44
- @routes.get("/experiment/models/{folder}")
45
- async def get_all_models(request):
46
- folder = request.match_info.get("folder", None)
47
- if not folder in folder_paths.folder_names_and_paths:
48
- return web.Response(status=404)
49
- files = self.get_model_file_list(folder)
50
- return web.json_response(files)
51
-
52
- @routes.get("/experiment/models/preview/{folder}/{path_index}/{filename:.*}")
53
- async def get_model_preview(request):
54
- folder_name = request.match_info.get("folder", None)
55
- path_index = int(request.match_info.get("path_index", None))
56
- filename = request.match_info.get("filename", None)
57
-
58
- if not folder_name in folder_paths.folder_names_and_paths:
59
- return web.Response(status=404)
60
-
61
- folders = folder_paths.folder_names_and_paths[folder_name]
62
- folder = folders[0][path_index]
63
- full_filename = os.path.join(folder, filename)
64
-
65
- previews = self.get_model_previews(full_filename)
66
- default_preview = previews[0] if len(previews) > 0 else None
67
- if default_preview is None or (isinstance(default_preview, str) and not os.path.isfile(default_preview)):
68
- return web.Response(status=404)
69
-
70
- try:
71
- with Image.open(default_preview) as img:
72
- img_bytes = BytesIO()
73
- img.save(img_bytes, format="WEBP")
74
- img_bytes.seek(0)
75
- return web.Response(body=img_bytes.getvalue(), content_type="image/webp")
76
- except:
77
- return web.Response(status=404)
78
-
79
- def get_model_file_list(self, folder_name: str):
80
- folder_name = map_legacy(folder_name)
81
- folders = folder_paths.folder_names_and_paths[folder_name]
82
- output_list: list[dict] = []
83
-
84
- for index, folder in enumerate(folders[0]):
85
- if not os.path.isdir(folder):
86
- continue
87
- out = self.cache_model_file_list_(folder)
88
- if out is None:
89
- out = self.recursive_search_models_(folder, index)
90
- self.set_cache(folder, out)
91
- output_list.extend(out[0])
92
-
93
- return output_list
94
-
95
- def cache_model_file_list_(self, folder: str):
96
- model_file_list_cache = self.get_cache(folder)
97
-
98
- if model_file_list_cache is None:
99
- return None
100
- if not os.path.isdir(folder):
101
- return None
102
- if os.path.getmtime(folder) != model_file_list_cache[1]:
103
- return None
104
- for x in model_file_list_cache[1]:
105
- time_modified = model_file_list_cache[1][x]
106
- folder = x
107
- if os.path.getmtime(folder) != time_modified:
108
- return None
109
-
110
- return model_file_list_cache
111
-
112
- def recursive_search_models_(self, directory: str, pathIndex: int) -> tuple[list[str], dict[str, float], float]:
113
- if not os.path.isdir(directory):
114
- return [], {}, time.perf_counter()
115
-
116
- excluded_dir_names = [".git"]
117
- # TODO use settings
118
- include_hidden_files = False
119
-
120
- result: list[str] = []
121
- dirs: dict[str, float] = {}
122
-
123
- for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
124
- subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
125
- if not include_hidden_files:
126
- subdirs[:] = [d for d in subdirs if not d.startswith(".")]
127
- filenames = [f for f in filenames if not f.startswith(".")]
128
-
129
- filenames = filter_files_extensions(filenames, folder_paths.supported_pt_extensions)
130
-
131
- for file_name in filenames:
132
- try:
133
- full_path = os.path.join(dirpath, file_name)
134
- relative_path = os.path.relpath(full_path, directory)
135
-
136
- # Get file metadata
137
- file_info = {
138
- "name": relative_path,
139
- "pathIndex": pathIndex,
140
- "modified": os.path.getmtime(full_path), # Add modification time
141
- "created": os.path.getctime(full_path), # Add creation time
142
- "size": os.path.getsize(full_path) # Add file size
143
- }
144
- result.append(file_info)
145
-
146
- except Exception as e:
147
- logging.warning(f"Warning: Unable to access {file_name}. Error: {e}. Skipping this file.")
148
- continue
149
-
150
- for d in subdirs:
151
- path: str = os.path.join(dirpath, d)
152
- try:
153
- dirs[path] = os.path.getmtime(path)
154
- except FileNotFoundError:
155
- logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
156
- continue
157
-
158
- return result, dirs, time.perf_counter()
159
-
160
- def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
161
- dirname = os.path.dirname(filepath)
162
-
163
- if not os.path.exists(dirname):
164
- return []
165
-
166
- basename = os.path.splitext(filepath)[0]
167
- match_files = glob.glob(f"{basename}.*", recursive=False)
168
- image_files = filter_files_content_types(match_files, "image")
169
- safetensors_file = next(filter(lambda x: x.endswith(".safetensors"), match_files), None)
170
- safetensors_metadata = {}
171
-
172
- result: list[str | BytesIO] = []
173
-
174
- for filename in image_files:
175
- _basename = os.path.splitext(filename)[0]
176
- if _basename == basename:
177
- result.append(filename)
178
- if _basename == f"{basename}.preview":
179
- result.append(filename)
180
-
181
- if safetensors_file:
182
- safetensors_filepath = os.path.join(dirname, safetensors_file)
183
- header = comfy.utils.safetensors_header(safetensors_filepath, max_size=8*1024*1024)
184
- if header:
185
- safetensors_metadata = json.loads(header)
186
- safetensors_images = safetensors_metadata.get("__metadata__", {}).get("ssmd_cover_images", None)
187
- if safetensors_images:
188
- safetensors_images = json.loads(safetensors_images)
189
- for image in safetensors_images:
190
- result.append(BytesIO(base64.b64decode(image)))
191
-
192
- return result
193
-
194
- def __exit__(self, exc_type, exc_value, traceback):
195
- self.clear_cache()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app/user_manager.py DELETED
@@ -1,438 +0,0 @@
1
- from __future__ import annotations
2
- import json
3
- import os
4
- import re
5
- import uuid
6
- import glob
7
- import shutil
8
- import logging
9
- from aiohttp import web
10
- from urllib import parse
11
- from comfy.cli_args import args
12
- import folder_paths
13
- from .app_settings import AppSettings
14
- from typing import TypedDict
15
-
16
- default_user = "default"
17
-
18
-
19
- class FileInfo(TypedDict):
20
- path: str
21
- size: int
22
- modified: int
23
- created: int
24
-
25
-
26
- def get_file_info(path: str, relative_to: str) -> FileInfo:
27
- return {
28
- "path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
29
- "size": os.path.getsize(path),
30
- "modified": os.path.getmtime(path),
31
- "created": os.path.getctime(path)
32
- }
33
-
34
-
35
- class UserManager():
36
- def __init__(self):
37
- user_directory = folder_paths.get_user_directory()
38
-
39
- self.settings = AppSettings(self)
40
- if not os.path.exists(user_directory):
41
- os.makedirs(user_directory, exist_ok=True)
42
- if not args.multi_user:
43
- logging.warning("****** User settings have been changed to be stored on the server instead of browser storage. ******")
44
- logging.warning("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
45
-
46
- if args.multi_user:
47
- if os.path.isfile(self.get_users_file()):
48
- with open(self.get_users_file()) as f:
49
- self.users = json.load(f)
50
- else:
51
- self.users = {}
52
- else:
53
- self.users = {"default": "default"}
54
-
55
- def get_users_file(self):
56
- return os.path.join(folder_paths.get_user_directory(), "users.json")
57
-
58
- def get_request_user_id(self, request):
59
- user = "default"
60
- if args.multi_user and "comfy-user" in request.headers:
61
- user = request.headers["comfy-user"]
62
-
63
- if user not in self.users:
64
- raise KeyError("Unknown user: " + user)
65
-
66
- return user
67
-
68
- def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
69
- user_directory = folder_paths.get_user_directory()
70
-
71
- if type == "userdata":
72
- root_dir = user_directory
73
- else:
74
- raise KeyError("Unknown filepath type:" + type)
75
-
76
- user = self.get_request_user_id(request)
77
- path = user_root = os.path.abspath(os.path.join(root_dir, user))
78
-
79
- # prevent leaving /{type}
80
- if os.path.commonpath((root_dir, user_root)) != root_dir:
81
- return None
82
-
83
- if file is not None:
84
- # Check if filename is url encoded
85
- if "%" in file:
86
- file = parse.unquote(file)
87
-
88
- # prevent leaving /{type}/{user}
89
- path = os.path.abspath(os.path.join(user_root, file))
90
- if os.path.commonpath((user_root, path)) != user_root:
91
- return None
92
-
93
- parent = os.path.split(path)[0]
94
-
95
- if create_dir and not os.path.exists(parent):
96
- os.makedirs(parent, exist_ok=True)
97
-
98
- return path
99
-
100
- def add_user(self, name):
101
- name = name.strip()
102
- if not name:
103
- raise ValueError("username not provided")
104
- user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
105
- user_id = user_id + "_" + str(uuid.uuid4())
106
-
107
- self.users[user_id] = name
108
-
109
- with open(self.get_users_file(), "w") as f:
110
- json.dump(self.users, f)
111
-
112
- return user_id
113
-
114
- def add_routes(self, routes):
115
- self.settings.add_routes(routes)
116
-
117
- @routes.get("/users")
118
- async def get_users(request):
119
- if args.multi_user:
120
- return web.json_response({"storage": "server", "users": self.users})
121
- else:
122
- user_dir = self.get_request_user_filepath(request, None, create_dir=False)
123
- return web.json_response({
124
- "storage": "server",
125
- "migrated": os.path.exists(user_dir)
126
- })
127
-
128
- @routes.post("/users")
129
- async def post_users(request):
130
- body = await request.json()
131
- username = body["username"]
132
- if username in self.users.values():
133
- return web.json_response({"error": "Duplicate username."}, status=400)
134
-
135
- user_id = self.add_user(username)
136
- return web.json_response(user_id)
137
-
138
- @routes.get("/userdata")
139
- async def listuserdata(request):
140
- """
141
- List user data files in a specified directory.
142
-
143
- This endpoint allows listing files in a user's data directory, with options for recursion,
144
- full file information, and path splitting.
145
-
146
- Query Parameters:
147
- - dir (required): The directory to list files from.
148
- - recurse (optional): If "true", recursively list files in subdirectories.
149
- - full_info (optional): If "true", return detailed file information (path, size, modified time).
150
- - split (optional): If "true", split file paths into components (only applies when full_info is false).
151
-
152
- Returns:
153
- - 400: If 'dir' parameter is missing.
154
- - 403: If the requested path is not allowed.
155
- - 404: If the requested directory does not exist.
156
- - 200: JSON response with the list of files or file information.
157
-
158
- The response format depends on the query parameters:
159
- - Default: List of relative file paths.
160
- - full_info=true: List of dictionaries with file details.
161
- - split=true (and full_info=false): List of lists, each containing path components.
162
- """
163
- directory = request.rel_url.query.get('dir', '')
164
- if not directory:
165
- return web.Response(status=400, text="Directory not provided")
166
-
167
- path = self.get_request_user_filepath(request, directory)
168
- if not path:
169
- return web.Response(status=403, text="Invalid directory")
170
-
171
- if not os.path.exists(path):
172
- return web.Response(status=404, text="Directory not found")
173
-
174
- recurse = request.rel_url.query.get('recurse', '').lower() == "true"
175
- full_info = request.rel_url.query.get('full_info', '').lower() == "true"
176
- split_path = request.rel_url.query.get('split', '').lower() == "true"
177
-
178
- # Use different patterns based on whether we're recursing or not
179
- if recurse:
180
- pattern = os.path.join(glob.escape(path), '**', '*')
181
- else:
182
- pattern = os.path.join(glob.escape(path), '*')
183
-
184
- def process_full_path(full_path: str) -> FileInfo | str | list[str]:
185
- if full_info:
186
- return get_file_info(full_path, path)
187
-
188
- rel_path = os.path.relpath(full_path, path).replace(os.sep, '/')
189
- if split_path:
190
- return [rel_path] + rel_path.split('/')
191
-
192
- return rel_path
193
-
194
- results = [
195
- process_full_path(full_path)
196
- for full_path in glob.glob(pattern, recursive=recurse)
197
- if os.path.isfile(full_path)
198
- ]
199
-
200
- return web.json_response(results)
201
-
202
- @routes.get("/v2/userdata")
203
- async def list_userdata_v2(request):
204
- """
205
- List files and directories in a user's data directory.
206
-
207
- This endpoint provides a structured listing of contents within a specified
208
- subdirectory of the user's data storage.
209
-
210
- Query Parameters:
211
- - path (optional): The relative path within the user's data directory
212
- to list. Defaults to the root ('').
213
-
214
- Returns:
215
- - 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
216
- - 404: If the requested path does not exist.
217
- - 403: If the user is invalid.
218
- - 500: If there is an error reading the directory contents.
219
- - 200: JSON response containing a list of file and directory objects.
220
- Each object includes:
221
- - name: The name of the file or directory.
222
- - type: 'file' or 'directory'.
223
- - path: The relative path from the user's data root.
224
- - size (for files): The size in bytes.
225
- - modified (for files): The last modified timestamp (Unix epoch).
226
- """
227
- requested_rel_path = request.rel_url.query.get('path', '')
228
-
229
- # URL-decode the path parameter
230
- try:
231
- requested_rel_path = parse.unquote(requested_rel_path)
232
- except Exception as e:
233
- logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
234
- return web.Response(status=400, text="Invalid characters in path parameter")
235
-
236
-
237
- # Check user validity and get the absolute path for the requested directory
238
- try:
239
- base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
240
-
241
- if requested_rel_path:
242
- target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
243
- else:
244
- target_abs_path = base_user_path
245
-
246
- except KeyError as e:
247
- # Invalid user detected by get_request_user_id inside get_request_user_filepath
248
- logging.warning(f"Access denied for user: {e}")
249
- return web.Response(status=403, text="Invalid user specified in request")
250
-
251
-
252
- if not target_abs_path:
253
- # Path traversal or other issue detected by get_request_user_filepath
254
- return web.Response(status=400, text="Invalid path requested")
255
-
256
- # Handle cases where the user directory or target path doesn't exist
257
- if not os.path.exists(target_abs_path):
258
- # Check if it's the base user directory that's missing (new user case)
259
- if target_abs_path == base_user_path:
260
- # It's okay if the base user directory doesn't exist yet, return empty list
261
- return web.json_response([])
262
- else:
263
- # A specific subdirectory was requested but doesn't exist
264
- return web.Response(status=404, text="Requested path not found")
265
-
266
- if not os.path.isdir(target_abs_path):
267
- return web.Response(status=400, text="Requested path is not a directory")
268
-
269
- results = []
270
- try:
271
- for root, dirs, files in os.walk(target_abs_path, topdown=True):
272
- # Process directories
273
- for dir_name in dirs:
274
- dir_path = os.path.join(root, dir_name)
275
- rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
276
- results.append({
277
- "name": dir_name,
278
- "path": rel_path,
279
- "type": "directory"
280
- })
281
-
282
- # Process files
283
- for file_name in files:
284
- file_path = os.path.join(root, file_name)
285
- rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
286
- entry_info = {
287
- "name": file_name,
288
- "path": rel_path,
289
- "type": "file"
290
- }
291
- try:
292
- stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
293
- entry_info["size"] = stats.st_size
294
- entry_info["modified"] = stats.st_mtime
295
- except OSError as stat_error:
296
- logging.warning(f"Could not stat file {file_path}: {stat_error}")
297
- pass # Include file with available info
298
- results.append(entry_info)
299
- except OSError as e:
300
- logging.error(f"Error listing directory {target_abs_path}: {e}")
301
- return web.Response(status=500, text="Error reading directory contents")
302
-
303
- # Sort results alphabetically, directories first then files
304
- results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
305
-
306
- return web.json_response(results)
307
-
308
- def get_user_data_path(request, check_exists = False, param = "file"):
309
- file = request.match_info.get(param, None)
310
- if not file:
311
- return web.Response(status=400)
312
-
313
- path = self.get_request_user_filepath(request, file)
314
- if not path:
315
- return web.Response(status=403)
316
-
317
- if check_exists and not os.path.exists(path):
318
- return web.Response(status=404)
319
-
320
- return path
321
-
322
- @routes.get("/userdata/{file}")
323
- async def getuserdata(request):
324
- path = get_user_data_path(request, check_exists=True)
325
- if not isinstance(path, str):
326
- return path
327
-
328
- return web.FileResponse(path)
329
-
330
- @routes.post("/userdata/{file}")
331
- async def post_userdata(request):
332
- """
333
- Upload or update a user data file.
334
-
335
- This endpoint handles file uploads to a user's data directory, with options for
336
- controlling overwrite behavior and response format.
337
-
338
- Query Parameters:
339
- - overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
340
- - full_info (optional): If "true", returns detailed file information (path, size, modified time).
341
- If "false", returns only the relative file path.
342
-
343
- Path Parameters:
344
- - file: The target file path (URL encoded if necessary).
345
-
346
- Returns:
347
- - 400: If 'file' parameter is missing.
348
- - 403: If the requested path is not allowed.
349
- - 409: If overwrite=false and the file already exists.
350
- - 200: JSON response with either:
351
- - Full file information (if full_info=true)
352
- - Relative file path (if full_info=false)
353
-
354
- The request body should contain the raw file content to be written.
355
- """
356
- path = get_user_data_path(request)
357
- if not isinstance(path, str):
358
- return path
359
-
360
- overwrite = request.query.get("overwrite", 'true') != "false"
361
- full_info = request.query.get('full_info', 'false').lower() == "true"
362
-
363
- if not overwrite and os.path.exists(path):
364
- return web.Response(status=409, text="File already exists")
365
-
366
- body = await request.read()
367
-
368
- with open(path, "wb") as f:
369
- f.write(body)
370
-
371
- user_path = self.get_request_user_filepath(request, None)
372
- if full_info:
373
- resp = get_file_info(path, user_path)
374
- else:
375
- resp = os.path.relpath(path, user_path)
376
-
377
- return web.json_response(resp)
378
-
379
- @routes.delete("/userdata/{file}")
380
- async def delete_userdata(request):
381
- path = get_user_data_path(request, check_exists=True)
382
- if not isinstance(path, str):
383
- return path
384
-
385
- os.remove(path)
386
-
387
- return web.Response(status=204)
388
-
389
- @routes.post("/userdata/{file}/move/{dest}")
390
- async def move_userdata(request):
391
- """
392
- Move or rename a user data file.
393
-
394
- This endpoint handles moving or renaming files within a user's data directory, with options for
395
- controlling overwrite behavior and response format.
396
-
397
- Path Parameters:
398
- - file: The source file path (URL encoded if necessary)
399
- - dest: The destination file path (URL encoded if necessary)
400
-
401
- Query Parameters:
402
- - overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
403
- - full_info (optional): If "true", returns detailed file information (path, size, modified time).
404
- If "false", returns only the relative file path.
405
-
406
- Returns:
407
- - 400: If either 'file' or 'dest' parameter is missing
408
- - 403: If either requested path is not allowed
409
- - 404: If the source file does not exist
410
- - 409: If overwrite=false and the destination file already exists
411
- - 200: JSON response with either:
412
- - Full file information (if full_info=true)
413
- - Relative file path (if full_info=false)
414
- """
415
- source = get_user_data_path(request, check_exists=True)
416
- if not isinstance(source, str):
417
- return source
418
-
419
- dest = get_user_data_path(request, check_exists=False, param="dest")
420
- if not isinstance(source, str):
421
- return dest
422
-
423
- overwrite = request.query.get("overwrite", 'true') != "false"
424
- full_info = request.query.get('full_info', 'false').lower() == "true"
425
-
426
- if not overwrite and os.path.exists(dest):
427
- return web.Response(status=409, text="File already exists")
428
-
429
- logging.info(f"moving '{source}' -> '{dest}'")
430
- shutil.move(source, dest)
431
-
432
- user_path = self.get_request_user_filepath(request, None)
433
- if full_info:
434
- resp = get_file_info(dest, user_path)
435
- else:
436
- resp = os.path.relpath(dest, user_path)
437
-
438
- return web.json_response(resp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{api_server → chain_injectors}/__init__.py RENAMED
File without changes
chain_injectors/conditioning_injector.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def inject(assembler, chain_definition, chain_items):
2
+ if not chain_items:
3
+ return
4
+
5
+ ksampler_name = chain_definition.get('ksampler_node', 'ksampler')
6
+
7
+ target_node_id = None
8
+ target_input_name = None
9
+
10
+ if ksampler_name in assembler.node_map:
11
+ ksampler_id = assembler.node_map[ksampler_name]
12
+ if 'positive' in assembler.workflow[ksampler_id]['inputs']:
13
+ target_node_id = ksampler_id
14
+ target_input_name = 'positive'
15
+ print(f"Conditioning injector targeting KSampler node '{ksampler_name}'.")
16
+ else:
17
+ print(f"Warning: KSampler node '{ksampler_name}' for Conditioning chain not found. Skipping.")
18
+ return
19
+
20
+ if not target_node_id:
21
+ print("Warning: Conditioning chain could not find a valid injection point (KSampler may be missing 'positive' input). Skipping.")
22
+ return
23
+
24
+ clip_source_str = chain_definition.get('clip_source')
25
+ if not clip_source_str:
26
+ print("Warning: 'clip_source' definition missing in the recipe for the Conditioning chain. Skipping.")
27
+ return
28
+ clip_node_name, clip_idx_str = clip_source_str.split(':')
29
+ if clip_node_name not in assembler.node_map:
30
+ print(f"Warning: CLIP source node '{clip_node_name}' for Conditioning chain not found. Skipping.")
31
+ return
32
+ clip_connection = [assembler.node_map[clip_node_name], int(clip_idx_str)]
33
+
34
+ original_positive_connection = assembler.workflow[target_node_id]['inputs'][target_input_name]
35
+
36
+ area_conditioning_outputs = []
37
+
38
+ for item_data in chain_items:
39
+ prompt = item_data.get('prompt', '')
40
+ if not prompt or not prompt.strip():
41
+ continue
42
+
43
+ text_encode_id = assembler._get_unique_id()
44
+ text_encode_node = assembler._get_node_template("CLIPTextEncode")
45
+ text_encode_node['inputs']['text'] = prompt
46
+ text_encode_node['inputs']['clip'] = clip_connection
47
+ assembler.workflow[text_encode_id] = text_encode_node
48
+
49
+ set_area_id = assembler._get_unique_id()
50
+ set_area_node = assembler._get_node_template("ConditioningSetArea")
51
+ set_area_node['inputs']['width'] = item_data.get('width', 1024)
52
+ set_area_node['inputs']['height'] = item_data.get('height', 1024)
53
+ set_area_node['inputs']['x'] = item_data.get('x', 0)
54
+ set_area_node['inputs']['y'] = item_data.get('y', 0)
55
+ set_area_node['inputs']['strength'] = item_data.get('strength', 1.0)
56
+ set_area_node['inputs']['conditioning'] = [text_encode_id, 0]
57
+ assembler.workflow[set_area_id] = set_area_node
58
+
59
+ area_conditioning_outputs.append([set_area_id, 0])
60
+
61
+ if not area_conditioning_outputs:
62
+ return
63
+
64
+ current_combined_conditioning = area_conditioning_outputs[0]
65
+ if len(area_conditioning_outputs) > 1:
66
+ for i in range(1, len(area_conditioning_outputs)):
67
+ combine_id = assembler._get_unique_id()
68
+ combine_node = assembler._get_node_template("ConditioningCombine")
69
+ combine_node['inputs']['conditioning_1'] = current_combined_conditioning
70
+ combine_node['inputs']['conditioning_2'] = area_conditioning_outputs[i]
71
+ assembler.workflow[combine_id] = combine_node
72
+ current_combined_conditioning = [combine_id, 0]
73
+
74
+ final_combine_id = assembler._get_unique_id()
75
+ final_combine_node = assembler._get_node_template("ConditioningCombine")
76
+ final_combine_node['inputs']['conditioning_1'] = original_positive_connection
77
+ final_combine_node['inputs']['conditioning_2'] = current_combined_conditioning
78
+ assembler.workflow[final_combine_id] = final_combine_node
79
+
80
+ assembler.workflow[target_node_id]['inputs'][target_input_name] = [final_combine_id, 0]
81
+ print(f"Conditioning injector applied. Redirected '{target_input_name}' input with {len(area_conditioning_outputs)} regional prompts.")
chain_injectors/controlnet_injector.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def inject(assembler, chain_definition, chain_items):
2
+ if not chain_items:
3
+ return
4
+
5
+ ksampler_name = chain_definition.get('ksampler_node', 'ksampler')
6
+ if ksampler_name not in assembler.node_map:
7
+ print(f"Warning: Target node '{ksampler_name}' for ControlNet chain not found. Skipping chain injection.")
8
+ return
9
+
10
+ ksampler_id = assembler.node_map[ksampler_name]
11
+
12
+ if 'positive' not in assembler.workflow[ksampler_id]['inputs'] or \
13
+ 'negative' not in assembler.workflow[ksampler_id]['inputs']:
14
+ print(f"Warning: KSampler node '{ksampler_name}' is missing 'positive' or 'negative' inputs. Skipping ControlNet chain.")
15
+ return
16
+
17
+ current_positive_connection = assembler.workflow[ksampler_id]['inputs']['positive']
18
+ current_negative_connection = assembler.workflow[ksampler_id]['inputs']['negative']
19
+
20
+ for item_data in chain_items:
21
+ cn_loader_id = assembler._get_unique_id()
22
+ cn_loader_node = assembler._get_node_template("ControlNetLoader")
23
+ cn_loader_node['inputs']['control_net_name'] = item_data['control_net_name']
24
+ assembler.workflow[cn_loader_id] = cn_loader_node
25
+
26
+ image_loader_id = assembler._get_unique_id()
27
+ image_loader_node = assembler._get_node_template("LoadImage")
28
+ image_loader_node['inputs']['image'] = item_data['image']
29
+ assembler.workflow[image_loader_id] = image_loader_node
30
+
31
+ apply_cn_id = assembler._get_unique_id()
32
+ apply_cn_node = assembler._get_node_template(chain_definition['template'])
33
+
34
+ apply_cn_node['inputs']['strength'] = item_data['strength']
35
+
36
+ apply_cn_node['inputs']['positive'] = current_positive_connection
37
+ apply_cn_node['inputs']['negative'] = current_negative_connection
38
+ apply_cn_node['inputs']['control_net'] = [cn_loader_id, 0]
39
+ apply_cn_node['inputs']['image'] = [image_loader_id, 0]
40
+
41
+ assembler.workflow[apply_cn_id] = apply_cn_node
42
+
43
+ current_positive_connection = [apply_cn_id, 0]
44
+ current_negative_connection = [apply_cn_id, 1]
45
+
46
+ assembler.workflow[ksampler_id]['inputs']['positive'] = current_positive_connection
47
+ assembler.workflow[ksampler_id]['inputs']['negative'] = current_negative_connection
48
+
49
+ print(f"ControlNet injector applied. KSampler inputs redirected through {len(chain_items)} ControlNet nodes.")
chain_injectors/ipadapter_injector.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def inject(assembler, chain_definition, chain_items):
2
+ if not chain_items:
3
+ return
4
+
5
+ final_settings = {}
6
+ if chain_items and isinstance(chain_items[-1], dict) and chain_items[-1].get('is_final_settings'):
7
+ final_settings = chain_items.pop()
8
+
9
+ if not chain_items:
10
+ return
11
+
12
+ end_node_name = chain_definition.get('end')
13
+ if not end_node_name or end_node_name not in assembler.node_map:
14
+ print(f"Warning: Target node '{end_node_name}' for IPAdapter chain not found. Skipping chain injection.")
15
+ return
16
+
17
+ end_node_id = assembler.node_map[end_node_name]
18
+
19
+ if 'model' not in assembler.workflow[end_node_id]['inputs']:
20
+ print(f"Warning: Target node '{end_node_name}' is missing 'model' input. Skipping IPAdapter chain.")
21
+ return
22
+
23
+ current_model_connection = assembler.workflow[end_node_id]['inputs']['model']
24
+
25
+ model_type = final_settings.get('model_type', 'sdxl')
26
+ megapixels = 1.05 if model_type == 'sdxl' else 0.39
27
+
28
+ pos_embed_outputs = []
29
+ neg_embed_outputs = []
30
+
31
+ for i, item_data in enumerate(chain_items):
32
+ loader_type = 'FaceID' if 'FACEID' in item_data.get('preset', '') else 'Unified'
33
+
34
+ loader_template_name = "IPAdapterUnifiedLoader"
35
+ if loader_type == 'FaceID':
36
+ loader_template_name = "IPAdapterUnifiedLoaderFaceID"
37
+
38
+ image_loader_id = assembler._get_unique_id()
39
+ image_loader_node = assembler._get_node_template("LoadImage")
40
+ image_loader_node['inputs']['image'] = item_data['image']
41
+ assembler.workflow[image_loader_id] = image_loader_node
42
+
43
+ image_scaler_id = assembler._get_unique_id()
44
+ image_scaler_node = assembler._get_node_template("ImageScaleToTotalPixels")
45
+ image_scaler_node['inputs']['image'] = [image_loader_id, 0]
46
+ image_scaler_node['inputs']['megapixels'] = megapixels
47
+ image_scaler_node['inputs']['upscale_method'] = "lanczos"
48
+ assembler.workflow[image_scaler_id] = image_scaler_node
49
+
50
+ ipadapter_loader_id = assembler._get_unique_id()
51
+ ipadapter_loader_node = assembler._get_node_template(loader_template_name)
52
+ ipadapter_loader_node['inputs']['model'] = current_model_connection
53
+ ipadapter_loader_node['inputs']['preset'] = item_data['preset']
54
+ if loader_type == 'FaceID':
55
+ ipadapter_loader_node['inputs']['lora_strength'] = item_data.get('lora_strength', 0.6)
56
+ assembler.workflow[ipadapter_loader_id] = ipadapter_loader_node
57
+
58
+ encoder_id = assembler._get_unique_id()
59
+ encoder_node = assembler._get_node_template("IPAdapterEncoder")
60
+ encoder_node['inputs']['weight'] = item_data['weight']
61
+ encoder_node['inputs']['ipadapter'] = [ipadapter_loader_id, 1]
62
+ encoder_node['inputs']['image'] = [image_scaler_id, 0]
63
+ assembler.workflow[encoder_id] = encoder_node
64
+
65
+ pos_embed_outputs.append([encoder_id, 0])
66
+ neg_embed_outputs.append([encoder_id, 1])
67
+
68
+ pos_combiner_id = assembler._get_unique_id()
69
+ pos_combiner_node = assembler._get_node_template("IPAdapterCombineEmbeds")
70
+ pos_combiner_node['inputs']['method'] = final_settings.get('final_combine_method', 'concat')
71
+ for i, conn in enumerate(pos_embed_outputs):
72
+ pos_combiner_node['inputs'][f'embed{i+1}'] = conn
73
+ assembler.workflow[pos_combiner_id] = pos_combiner_node
74
+
75
+ neg_combiner_id = assembler._get_unique_id()
76
+ neg_combiner_node = assembler._get_node_template("IPAdapterCombineEmbeds")
77
+ neg_combiner_node['inputs']['method'] = final_settings.get('final_combine_method', 'concat')
78
+ for i, conn in enumerate(neg_embed_outputs):
79
+ neg_combiner_node['inputs'][f'embed{i+1}'] = conn
80
+ assembler.workflow[neg_combiner_id] = neg_combiner_node
81
+
82
+ final_loader_type = 'FaceID' if 'FACEID' in final_settings.get('final_preset', '') else 'Unified'
83
+ final_loader_template_name = "IPAdapterUnifiedLoader"
84
+ if final_loader_type == 'FaceID':
85
+ final_loader_template_name = "IPAdapterUnifiedLoaderFaceID"
86
+
87
+ final_loader_id = assembler._get_unique_id()
88
+ final_loader_node = assembler._get_node_template(final_loader_template_name)
89
+ final_loader_node['inputs']['model'] = current_model_connection
90
+ final_loader_node['inputs']['preset'] = final_settings.get('final_preset', 'STANDARD (medium strength)')
91
+ if final_loader_type == 'FaceID':
92
+ final_loader_node['inputs']['lora_strength'] = final_settings.get('final_lora_strength', 0.6)
93
+ assembler.workflow[final_loader_id] = final_loader_node
94
+
95
+ apply_embeds_id = assembler._get_unique_id()
96
+ apply_embeds_node = assembler._get_node_template("IPAdapterEmbeds")
97
+ apply_embeds_node['inputs']['weight'] = final_settings.get('final_weight', 1.0)
98
+ apply_embeds_node['inputs']['embeds_scaling'] = final_settings.get('final_embeds_scaling', 'V only')
99
+ apply_embeds_node['inputs']['model'] = [final_loader_id, 0]
100
+ apply_embeds_node['inputs']['ipadapter'] = [final_loader_id, 1]
101
+ apply_embeds_node['inputs']['pos_embed'] = [pos_combiner_id, 0]
102
+ apply_embeds_node['inputs']['neg_embed'] = [neg_combiner_id, 0]
103
+ assembler.workflow[apply_embeds_id] = apply_embeds_node
104
+
105
+ assembler.workflow[end_node_id]['inputs']['model'] = [apply_embeds_id, 0]
106
+ print(f"IPAdapter injector applied. Redirected '{end_node_name}' model input through {len(chain_items)} reference images.")
comfy/checkpoint_pickle.py DELETED
@@ -1,13 +0,0 @@
1
- import pickle
2
-
3
- load = pickle.load
4
-
5
- class Empty:
6
- pass
7
-
8
- class Unpickler(pickle.Unpickler):
9
- def find_class(self, module, name):
10
- #TODO: safe unpickle
11
- if module.startswith("pytorch_lightning"):
12
- return Empty
13
- return super().find_class(module, name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/cldm/cldm.py DELETED
@@ -1,433 +0,0 @@
1
- #taken from: https://github.com/lllyasviel/ControlNet
2
- #and modified
3
-
4
- import torch
5
- import torch.nn as nn
6
-
7
- from ..ldm.modules.diffusionmodules.util import (
8
- timestep_embedding,
9
- )
10
-
11
- from ..ldm.modules.attention import SpatialTransformer
12
- from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
13
- from ..ldm.util import exists
14
- from .control_types import UNION_CONTROLNET_TYPES
15
- from collections import OrderedDict
16
- import comfy.ops
17
- from comfy.ldm.modules.attention import optimized_attention
18
-
19
- class OptimizedAttention(nn.Module):
20
- def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
21
- super().__init__()
22
- self.heads = nhead
23
- self.c = c
24
-
25
- self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
26
- self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
27
-
28
- def forward(self, x):
29
- x = self.in_proj(x)
30
- q, k, v = x.split(self.c, dim=2)
31
- out = optimized_attention(q, k, v, self.heads)
32
- return self.out_proj(out)
33
-
34
- class QuickGELU(nn.Module):
35
- def forward(self, x: torch.Tensor):
36
- return x * torch.sigmoid(1.702 * x)
37
-
38
- class ResBlockUnionControlnet(nn.Module):
39
- def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
40
- super().__init__()
41
- self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
42
- self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
43
- self.mlp = nn.Sequential(
44
- OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
45
- ("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
46
- self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
47
-
48
- def attention(self, x: torch.Tensor):
49
- return self.attn(x)
50
-
51
- def forward(self, x: torch.Tensor):
52
- x = x + self.attention(self.ln_1(x))
53
- x = x + self.mlp(self.ln_2(x))
54
- return x
55
-
56
- class ControlledUnetModel(UNetModel):
57
- #implemented in the ldm unet
58
- pass
59
-
60
- class ControlNet(nn.Module):
61
- def __init__(
62
- self,
63
- image_size,
64
- in_channels,
65
- model_channels,
66
- hint_channels,
67
- num_res_blocks,
68
- dropout=0,
69
- channel_mult=(1, 2, 4, 8),
70
- conv_resample=True,
71
- dims=2,
72
- num_classes=None,
73
- use_checkpoint=False,
74
- dtype=torch.float32,
75
- num_heads=-1,
76
- num_head_channels=-1,
77
- num_heads_upsample=-1,
78
- use_scale_shift_norm=False,
79
- resblock_updown=False,
80
- use_new_attention_order=False,
81
- use_spatial_transformer=False, # custom transformer support
82
- transformer_depth=1, # custom transformer support
83
- context_dim=None, # custom transformer support
84
- n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
85
- legacy=True,
86
- disable_self_attentions=None,
87
- num_attention_blocks=None,
88
- disable_middle_self_attn=False,
89
- use_linear_in_transformer=False,
90
- adm_in_channels=None,
91
- transformer_depth_middle=None,
92
- transformer_depth_output=None,
93
- attn_precision=None,
94
- union_controlnet_num_control_type=None,
95
- device=None,
96
- operations=comfy.ops.disable_weight_init,
97
- **kwargs,
98
- ):
99
- super().__init__()
100
- assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
101
- if use_spatial_transformer:
102
- assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
103
-
104
- if context_dim is not None:
105
- assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
106
- # from omegaconf.listconfig import ListConfig
107
- # if type(context_dim) == ListConfig:
108
- # context_dim = list(context_dim)
109
-
110
- if num_heads_upsample == -1:
111
- num_heads_upsample = num_heads
112
-
113
- if num_heads == -1:
114
- assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
115
-
116
- if num_head_channels == -1:
117
- assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
118
-
119
- self.dims = dims
120
- self.image_size = image_size
121
- self.in_channels = in_channels
122
- self.model_channels = model_channels
123
-
124
- if isinstance(num_res_blocks, int):
125
- self.num_res_blocks = len(channel_mult) * [num_res_blocks]
126
- else:
127
- if len(num_res_blocks) != len(channel_mult):
128
- raise ValueError("provide num_res_blocks either as an int (globally constant) or "
129
- "as a list/tuple (per-level) with the same length as channel_mult")
130
- self.num_res_blocks = num_res_blocks
131
-
132
- if disable_self_attentions is not None:
133
- # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
134
- assert len(disable_self_attentions) == len(channel_mult)
135
- if num_attention_blocks is not None:
136
- assert len(num_attention_blocks) == len(self.num_res_blocks)
137
- assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
138
-
139
- transformer_depth = transformer_depth[:]
140
-
141
- self.dropout = dropout
142
- self.channel_mult = channel_mult
143
- self.conv_resample = conv_resample
144
- self.num_classes = num_classes
145
- self.use_checkpoint = use_checkpoint
146
- self.dtype = dtype
147
- self.num_heads = num_heads
148
- self.num_head_channels = num_head_channels
149
- self.num_heads_upsample = num_heads_upsample
150
- self.predict_codebook_ids = n_embed is not None
151
-
152
- time_embed_dim = model_channels * 4
153
- self.time_embed = nn.Sequential(
154
- operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
155
- nn.SiLU(),
156
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
157
- )
158
-
159
- if self.num_classes is not None:
160
- if isinstance(self.num_classes, int):
161
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
162
- elif self.num_classes == "continuous":
163
- self.label_emb = nn.Linear(1, time_embed_dim)
164
- elif self.num_classes == "sequential":
165
- assert adm_in_channels is not None
166
- self.label_emb = nn.Sequential(
167
- nn.Sequential(
168
- operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
169
- nn.SiLU(),
170
- operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
171
- )
172
- )
173
- else:
174
- raise ValueError()
175
-
176
- self.input_blocks = nn.ModuleList(
177
- [
178
- TimestepEmbedSequential(
179
- operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
180
- )
181
- ]
182
- )
183
- self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
184
-
185
- self.input_hint_block = TimestepEmbedSequential(
186
- operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
187
- nn.SiLU(),
188
- operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
189
- nn.SiLU(),
190
- operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
191
- nn.SiLU(),
192
- operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
193
- nn.SiLU(),
194
- operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
195
- nn.SiLU(),
196
- operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
197
- nn.SiLU(),
198
- operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
199
- nn.SiLU(),
200
- operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
201
- )
202
-
203
- self._feature_size = model_channels
204
- input_block_chans = [model_channels]
205
- ch = model_channels
206
- ds = 1
207
- for level, mult in enumerate(channel_mult):
208
- for nr in range(self.num_res_blocks[level]):
209
- layers = [
210
- ResBlock(
211
- ch,
212
- time_embed_dim,
213
- dropout,
214
- out_channels=mult * model_channels,
215
- dims=dims,
216
- use_checkpoint=use_checkpoint,
217
- use_scale_shift_norm=use_scale_shift_norm,
218
- dtype=self.dtype,
219
- device=device,
220
- operations=operations,
221
- )
222
- ]
223
- ch = mult * model_channels
224
- num_transformers = transformer_depth.pop(0)
225
- if num_transformers > 0:
226
- if num_head_channels == -1:
227
- dim_head = ch // num_heads
228
- else:
229
- num_heads = ch // num_head_channels
230
- dim_head = num_head_channels
231
- if legacy:
232
- #num_heads = 1
233
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
234
- if exists(disable_self_attentions):
235
- disabled_sa = disable_self_attentions[level]
236
- else:
237
- disabled_sa = False
238
-
239
- if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
240
- layers.append(
241
- SpatialTransformer(
242
- ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
243
- disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
244
- use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
245
- )
246
- )
247
- self.input_blocks.append(TimestepEmbedSequential(*layers))
248
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
249
- self._feature_size += ch
250
- input_block_chans.append(ch)
251
- if level != len(channel_mult) - 1:
252
- out_ch = ch
253
- self.input_blocks.append(
254
- TimestepEmbedSequential(
255
- ResBlock(
256
- ch,
257
- time_embed_dim,
258
- dropout,
259
- out_channels=out_ch,
260
- dims=dims,
261
- use_checkpoint=use_checkpoint,
262
- use_scale_shift_norm=use_scale_shift_norm,
263
- down=True,
264
- dtype=self.dtype,
265
- device=device,
266
- operations=operations
267
- )
268
- if resblock_updown
269
- else Downsample(
270
- ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
271
- )
272
- )
273
- )
274
- ch = out_ch
275
- input_block_chans.append(ch)
276
- self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
277
- ds *= 2
278
- self._feature_size += ch
279
-
280
- if num_head_channels == -1:
281
- dim_head = ch // num_heads
282
- else:
283
- num_heads = ch // num_head_channels
284
- dim_head = num_head_channels
285
- if legacy:
286
- #num_heads = 1
287
- dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
288
- mid_block = [
289
- ResBlock(
290
- ch,
291
- time_embed_dim,
292
- dropout,
293
- dims=dims,
294
- use_checkpoint=use_checkpoint,
295
- use_scale_shift_norm=use_scale_shift_norm,
296
- dtype=self.dtype,
297
- device=device,
298
- operations=operations
299
- )]
300
- if transformer_depth_middle >= 0:
301
- mid_block += [SpatialTransformer( # always uses a self-attn
302
- ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
303
- disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
304
- use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
305
- ),
306
- ResBlock(
307
- ch,
308
- time_embed_dim,
309
- dropout,
310
- dims=dims,
311
- use_checkpoint=use_checkpoint,
312
- use_scale_shift_norm=use_scale_shift_norm,
313
- dtype=self.dtype,
314
- device=device,
315
- operations=operations
316
- )]
317
- self.middle_block = TimestepEmbedSequential(*mid_block)
318
- self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
319
- self._feature_size += ch
320
-
321
- if union_controlnet_num_control_type is not None:
322
- self.num_control_type = union_controlnet_num_control_type
323
- num_trans_channel = 320
324
- num_trans_head = 8
325
- num_trans_layer = 1
326
- num_proj_channel = 320
327
- # task_scale_factor = num_trans_channel ** 0.5
328
- self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
329
-
330
- self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
331
- self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
332
- #-----------------------------------------------------------------------------------------------------
333
-
334
- control_add_embed_dim = 256
335
- class ControlAddEmbedding(nn.Module):
336
- def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
337
- super().__init__()
338
- self.num_control_type = num_control_type
339
- self.in_dim = in_dim
340
- self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
341
- self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
342
- def forward(self, control_type, dtype, device):
343
- c_type = torch.zeros((self.num_control_type,), device=device)
344
- c_type[control_type] = 1.0
345
- c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
346
- return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
347
-
348
- self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
349
- else:
350
- self.task_embedding = None
351
- self.control_add_embedding = None
352
-
353
- def union_controlnet_merge(self, hint, control_type, emb, context):
354
- # Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
355
- inputs = []
356
- condition_list = []
357
-
358
- for idx in range(min(1, len(control_type))):
359
- controlnet_cond = self.input_hint_block(hint[idx], emb, context)
360
- feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
361
- if idx < len(control_type):
362
- feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
363
-
364
- inputs.append(feat_seq.unsqueeze(1))
365
- condition_list.append(controlnet_cond)
366
-
367
- x = torch.cat(inputs, dim=1)
368
- x = self.transformer_layes(x)
369
- controlnet_cond_fuser = None
370
- for idx in range(len(control_type)):
371
- alpha = self.spatial_ch_projs(x[:, idx])
372
- alpha = alpha.unsqueeze(-1).unsqueeze(-1)
373
- o = condition_list[idx] + alpha
374
- if controlnet_cond_fuser is None:
375
- controlnet_cond_fuser = o
376
- else:
377
- controlnet_cond_fuser += o
378
- return controlnet_cond_fuser
379
-
380
- def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
381
- return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
382
-
383
- def forward(self, x, hint, timesteps, context, y=None, **kwargs):
384
- t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
385
- emb = self.time_embed(t_emb)
386
-
387
- guided_hint = None
388
- if self.control_add_embedding is not None: #Union Controlnet
389
- control_type = kwargs.get("control_type", [])
390
-
391
- if any([c >= self.num_control_type for c in control_type]):
392
- max_type = max(control_type)
393
- max_type_name = {
394
- v: k for k, v in UNION_CONTROLNET_TYPES.items()
395
- }[max_type]
396
- raise ValueError(
397
- f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
398
- f"({self.num_control_type}) supported.\n" +
399
- "Please consider using the ProMax ControlNet Union model.\n" +
400
- "https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
401
- )
402
-
403
- emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
404
- if len(control_type) > 0:
405
- if len(hint.shape) < 5:
406
- hint = hint.unsqueeze(dim=0)
407
- guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
408
-
409
- if guided_hint is None:
410
- guided_hint = self.input_hint_block(hint, emb, context)
411
-
412
- out_output = []
413
- out_middle = []
414
-
415
- if self.num_classes is not None:
416
- assert y.shape[0] == x.shape[0]
417
- emb = emb + self.label_emb(y)
418
-
419
- h = x
420
- for module, zero_conv in zip(self.input_blocks, self.zero_convs):
421
- if guided_hint is not None:
422
- h = module(h, emb, context)
423
- h += guided_hint
424
- guided_hint = None
425
- else:
426
- h = module(h, emb, context)
427
- out_output.append(zero_conv(h, emb, context))
428
-
429
- h = self.middle_block(h, emb, context)
430
- out_middle.append(self.middle_block_out(h, emb, context))
431
-
432
- return {"middle": out_middle, "output": out_output}
433
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/cldm/control_types.py DELETED
@@ -1,10 +0,0 @@
1
- UNION_CONTROLNET_TYPES = {
2
- "openpose": 0,
3
- "depth": 1,
4
- "hed/pidi/scribble/ted": 2,
5
- "canny/lineart/anime_lineart/mlsd": 3,
6
- "normal": 4,
7
- "segment": 5,
8
- "tile": 6,
9
- "repaint": 7,
10
- }
 
 
 
 
 
 
 
 
 
 
 
comfy/cldm/dit_embedder.py DELETED
@@ -1,120 +0,0 @@
1
- import math
2
- from typing import List, Optional, Tuple
3
-
4
- import torch
5
- import torch.nn as nn
6
- from torch import Tensor
7
-
8
- from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
9
-
10
-
11
- class ControlNetEmbedder(nn.Module):
12
-
13
- def __init__(
14
- self,
15
- img_size: int,
16
- patch_size: int,
17
- in_chans: int,
18
- attention_head_dim: int,
19
- num_attention_heads: int,
20
- adm_in_channels: int,
21
- num_layers: int,
22
- main_model_double: int,
23
- double_y_emb: bool,
24
- device: torch.device,
25
- dtype: torch.dtype,
26
- pos_embed_max_size: Optional[int] = None,
27
- operations = None,
28
- ):
29
- super().__init__()
30
- self.main_model_double = main_model_double
31
- self.dtype = dtype
32
- self.hidden_size = num_attention_heads * attention_head_dim
33
- self.patch_size = patch_size
34
- self.x_embedder = PatchEmbed(
35
- img_size=img_size,
36
- patch_size=patch_size,
37
- in_chans=in_chans,
38
- embed_dim=self.hidden_size,
39
- strict_img_size=pos_embed_max_size is None,
40
- device=device,
41
- dtype=dtype,
42
- operations=operations,
43
- )
44
-
45
- self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
46
-
47
- self.double_y_emb = double_y_emb
48
- if self.double_y_emb:
49
- self.orig_y_embedder = VectorEmbedder(
50
- adm_in_channels, self.hidden_size, dtype, device, operations=operations
51
- )
52
- self.y_embedder = VectorEmbedder(
53
- self.hidden_size, self.hidden_size, dtype, device, operations=operations
54
- )
55
- else:
56
- self.y_embedder = VectorEmbedder(
57
- adm_in_channels, self.hidden_size, dtype, device, operations=operations
58
- )
59
-
60
- self.transformer_blocks = nn.ModuleList(
61
- DismantledBlock(
62
- hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
63
- dtype=dtype, device=device, operations=operations
64
- )
65
- for _ in range(num_layers)
66
- )
67
-
68
- # self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
69
- # TODO double check this logic when 8b
70
- self.use_y_embedder = True
71
-
72
- self.controlnet_blocks = nn.ModuleList([])
73
- for _ in range(len(self.transformer_blocks)):
74
- controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
75
- self.controlnet_blocks.append(controlnet_block)
76
-
77
- self.pos_embed_input = PatchEmbed(
78
- img_size=img_size,
79
- patch_size=patch_size,
80
- in_chans=in_chans,
81
- embed_dim=self.hidden_size,
82
- strict_img_size=False,
83
- device=device,
84
- dtype=dtype,
85
- operations=operations,
86
- )
87
-
88
- def forward(
89
- self,
90
- x: torch.Tensor,
91
- timesteps: torch.Tensor,
92
- y: Optional[torch.Tensor] = None,
93
- context: Optional[torch.Tensor] = None,
94
- hint = None,
95
- ) -> Tuple[Tensor, List[Tensor]]:
96
- x_shape = list(x.shape)
97
- x = self.x_embedder(x)
98
- if not self.double_y_emb:
99
- h = (x_shape[-2] + 1) // self.patch_size
100
- w = (x_shape[-1] + 1) // self.patch_size
101
- x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
102
- c = self.t_embedder(timesteps, dtype=x.dtype)
103
- if y is not None and self.y_embedder is not None:
104
- if self.double_y_emb:
105
- y = self.orig_y_embedder(y)
106
- y = self.y_embedder(y)
107
- c = c + y
108
-
109
- x = x + self.pos_embed_input(hint)
110
-
111
- block_out = ()
112
-
113
- repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
114
- for i in range(len(self.transformer_blocks)):
115
- out = self.transformer_blocks[i](x, c)
116
- if not self.double_y_emb:
117
- x = out
118
- block_out += (self.controlnet_blocks[i](out),) * repeat
119
-
120
- return {"output": block_out}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/cldm/mmdit.py DELETED
@@ -1,81 +0,0 @@
1
- import torch
2
- from typing import Optional
3
- import comfy.ldm.modules.diffusionmodules.mmdit
4
-
5
- class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
6
- def __init__(
7
- self,
8
- num_blocks = None,
9
- control_latent_channels = None,
10
- dtype = None,
11
- device = None,
12
- operations = None,
13
- **kwargs,
14
- ):
15
- super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
16
- # controlnet_blocks
17
- self.controlnet_blocks = torch.nn.ModuleList([])
18
- for _ in range(len(self.joint_blocks)):
19
- self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
20
-
21
- if control_latent_channels is None:
22
- control_latent_channels = self.in_channels
23
-
24
- self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
25
- None,
26
- self.patch_size,
27
- control_latent_channels,
28
- self.hidden_size,
29
- bias=True,
30
- strict_img_size=False,
31
- dtype=dtype,
32
- device=device,
33
- operations=operations
34
- )
35
-
36
- def forward(
37
- self,
38
- x: torch.Tensor,
39
- timesteps: torch.Tensor,
40
- y: Optional[torch.Tensor] = None,
41
- context: Optional[torch.Tensor] = None,
42
- hint = None,
43
- ) -> torch.Tensor:
44
-
45
- #weird sd3 controlnet specific stuff
46
- y = torch.zeros_like(y)
47
-
48
- if self.context_processor is not None:
49
- context = self.context_processor(context)
50
-
51
- hw = x.shape[-2:]
52
- x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
53
- x += self.pos_embed_input(hint)
54
-
55
- c = self.t_embedder(timesteps, dtype=x.dtype)
56
- if y is not None and self.y_embedder is not None:
57
- y = self.y_embedder(y)
58
- c = c + y
59
-
60
- if context is not None:
61
- context = self.context_embedder(context)
62
-
63
- output = []
64
-
65
- blocks = len(self.joint_blocks)
66
- for i in range(blocks):
67
- context, x = self.joint_blocks[i](
68
- context,
69
- x,
70
- c=c,
71
- use_checkpoint=self.use_checkpoint,
72
- )
73
-
74
- out = self.controlnet_blocks[i](x)
75
- count = self.depth // blocks
76
- if i == blocks - 1:
77
- count -= 1
78
- for j in range(count):
79
- output.append(out)
80
-
81
- return {"output": output}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/cli_args.py DELETED
@@ -1,237 +0,0 @@
1
- import argparse
2
- import enum
3
- import os
4
- import comfy.options
5
-
6
-
7
- class EnumAction(argparse.Action):
8
- """
9
- Argparse action for handling Enums
10
- """
11
- def __init__(self, **kwargs):
12
- # Pop off the type value
13
- enum_type = kwargs.pop("type", None)
14
-
15
- # Ensure an Enum subclass is provided
16
- if enum_type is None:
17
- raise ValueError("type must be assigned an Enum when using EnumAction")
18
- if not issubclass(enum_type, enum.Enum):
19
- raise TypeError("type must be an Enum when using EnumAction")
20
-
21
- # Generate choices from the Enum
22
- choices = tuple(e.value for e in enum_type)
23
- kwargs.setdefault("choices", choices)
24
- kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
25
-
26
- super(EnumAction, self).__init__(**kwargs)
27
-
28
- self._enum = enum_type
29
-
30
- def __call__(self, parser, namespace, values, option_string=None):
31
- # Convert value back into an Enum
32
- value = self._enum(values)
33
- setattr(namespace, self.dest, value)
34
-
35
-
36
- parser = argparse.ArgumentParser()
37
-
38
- parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
39
- parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
40
- parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
41
- parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
42
- parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
43
- parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
44
-
45
- parser.add_argument("--base-directory", type=str, default=None, help="Set the ComfyUI base directory for models, custom_nodes, input, output, temp, and user directories.")
46
- parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
47
- parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory. Overrides --base-directory.")
48
- parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory). Overrides --base-directory.")
49
- parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
50
- parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
51
- parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
52
- parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use. All other devices will not be visible.")
53
- parser.add_argument("--default-device", type=int, default=None, metavar="DEFAULT_DEVICE_ID", help="Set the id of the default device, all other devices will stay visible.")
54
- cm_group = parser.add_mutually_exclusive_group()
55
- cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
56
- cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
57
-
58
-
59
- fp_group = parser.add_mutually_exclusive_group()
60
- fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
61
- fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
62
-
63
- fpunet_group = parser.add_mutually_exclusive_group()
64
- fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
65
- fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
66
- fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
67
- fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
68
- fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
69
- fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
70
- fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
71
-
72
- fpvae_group = parser.add_mutually_exclusive_group()
73
- fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
74
- fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
75
- fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
76
-
77
- parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
78
-
79
- fpte_group = parser.add_mutually_exclusive_group()
80
- fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
81
- fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
82
- fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
83
- fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
84
- fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
85
-
86
- parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
87
-
88
- parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
89
-
90
- parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
91
- parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
92
- parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
93
-
94
- class LatentPreviewMethod(enum.Enum):
95
- NoPreviews = "none"
96
- Auto = "auto"
97
- Latent2RGB = "latent2rgb"
98
- TAESD = "taesd"
99
-
100
- parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
101
-
102
- parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
103
-
104
- cache_group = parser.add_mutually_exclusive_group()
105
- cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
106
- cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
107
- cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
108
-
109
- attn_group = parser.add_mutually_exclusive_group()
110
- attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
111
- attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
112
- attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
113
- attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
114
- attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
115
-
116
- parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
117
-
118
- upcast = parser.add_mutually_exclusive_group()
119
- upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
120
- upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
121
-
122
-
123
- vram_group = parser.add_mutually_exclusive_group()
124
- vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
125
- vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
126
- vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
127
- vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
128
- vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
129
- vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
130
-
131
- parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
132
-
133
- parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
134
-
135
- parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
136
-
137
- parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
138
- parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
139
-
140
- class PerformanceFeature(enum.Enum):
141
- Fp16Accumulation = "fp16_accumulation"
142
- Fp8MatrixMultiplication = "fp8_matrix_mult"
143
- CublasOps = "cublas_ops"
144
-
145
- parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
146
-
147
- parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
148
- parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
149
-
150
- parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
151
- parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
152
- parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
153
-
154
- parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
155
- parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
156
- parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
157
- parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
158
-
159
- parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
160
-
161
- parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
162
- parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
163
-
164
- # The default built-in provider hosted under web/
165
- DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
166
-
167
- parser.add_argument(
168
- "--front-end-version",
169
- type=str,
170
- default=DEFAULT_VERSION_STRING,
171
- help="""
172
- Specifies the version of the frontend to be used. This command needs internet connectivity to query and
173
- download available frontend implementations from GitHub releases.
174
-
175
- The version string should be in the format of:
176
- [repoOwner]/[repoName]@[version]
177
- where version is one of: "latest" or a valid version number (e.g. "1.0.0")
178
- """,
179
- )
180
-
181
- def is_valid_directory(path: str) -> str:
182
- """Validate if the given path is a directory, and check permissions."""
183
- if not os.path.exists(path):
184
- raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.")
185
- if not os.path.isdir(path):
186
- raise argparse.ArgumentTypeError(f"'{path}' is not a directory.")
187
- if not os.access(path, os.R_OK):
188
- raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
189
- return path
190
-
191
- parser.add_argument(
192
- "--front-end-root",
193
- type=is_valid_directory,
194
- default=None,
195
- help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
196
- )
197
-
198
- parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path. Overrides --base-directory.")
199
-
200
- parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
201
-
202
- parser.add_argument(
203
- "--comfy-api-base",
204
- type=str,
205
- default="https://api.comfy.org",
206
- help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
207
- )
208
-
209
- database_default_path = os.path.abspath(
210
- os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
211
- )
212
- parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
213
-
214
- if comfy.options.args_parsing:
215
- args = parser.parse_args()
216
- else:
217
- args = parser.parse_args([])
218
-
219
- if args.windows_standalone_build:
220
- args.auto_launch = True
221
-
222
- if args.disable_auto_launch:
223
- args.auto_launch = False
224
-
225
- if args.force_fp16:
226
- args.fp16_unet = True
227
-
228
-
229
- # '--fast' is not provided, use an empty set
230
- if args.fast is None:
231
- args.fast = set()
232
- # '--fast' is provided with an empty list, enable all optimizations
233
- elif args.fast == []:
234
- args.fast = set(PerformanceFeature)
235
- # '--fast' is provided with a list of performance features, use that list
236
- else:
237
- args.fast = set(args.fast)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_config_bigg.json DELETED
@@ -1,23 +0,0 @@
1
- {
2
- "architectures": [
3
- "CLIPTextModel"
4
- ],
5
- "attention_dropout": 0.0,
6
- "bos_token_id": 0,
7
- "dropout": 0.0,
8
- "eos_token_id": 49407,
9
- "hidden_act": "gelu",
10
- "hidden_size": 1280,
11
- "initializer_factor": 1.0,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 5120,
14
- "layer_norm_eps": 1e-05,
15
- "max_position_embeddings": 77,
16
- "model_type": "clip_text_model",
17
- "num_attention_heads": 20,
18
- "num_hidden_layers": 32,
19
- "pad_token_id": 1,
20
- "projection_dim": 1280,
21
- "torch_dtype": "float32",
22
- "vocab_size": 49408
23
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_model.py DELETED
@@ -1,244 +0,0 @@
1
- import torch
2
- from comfy.ldm.modules.attention import optimized_attention_for_device
3
- import comfy.ops
4
-
5
- class CLIPAttention(torch.nn.Module):
6
- def __init__(self, embed_dim, heads, dtype, device, operations):
7
- super().__init__()
8
-
9
- self.heads = heads
10
- self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
11
- self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
12
- self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
13
-
14
- self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
15
-
16
- def forward(self, x, mask=None, optimized_attention=None):
17
- q = self.q_proj(x)
18
- k = self.k_proj(x)
19
- v = self.v_proj(x)
20
-
21
- out = optimized_attention(q, k, v, self.heads, mask)
22
- return self.out_proj(out)
23
-
24
- ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
25
- "gelu": torch.nn.functional.gelu,
26
- "gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
27
- }
28
-
29
- class CLIPMLP(torch.nn.Module):
30
- def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
31
- super().__init__()
32
- self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
33
- self.activation = ACTIVATIONS[activation]
34
- self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
35
-
36
- def forward(self, x):
37
- x = self.fc1(x)
38
- x = self.activation(x)
39
- x = self.fc2(x)
40
- return x
41
-
42
- class CLIPLayer(torch.nn.Module):
43
- def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
44
- super().__init__()
45
- self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
46
- self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
47
- self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
48
- self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
49
-
50
- def forward(self, x, mask=None, optimized_attention=None):
51
- x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
52
- x += self.mlp(self.layer_norm2(x))
53
- return x
54
-
55
-
56
- class CLIPEncoder(torch.nn.Module):
57
- def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
58
- super().__init__()
59
- self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
60
-
61
- def forward(self, x, mask=None, intermediate_output=None):
62
- optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
63
-
64
- if intermediate_output is not None:
65
- if intermediate_output < 0:
66
- intermediate_output = len(self.layers) + intermediate_output
67
-
68
- intermediate = None
69
- for i, l in enumerate(self.layers):
70
- x = l(x, mask, optimized_attention)
71
- if i == intermediate_output:
72
- intermediate = x.clone()
73
- return x, intermediate
74
-
75
- class CLIPEmbeddings(torch.nn.Module):
76
- def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
77
- super().__init__()
78
- self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
79
- self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
80
-
81
- def forward(self, input_tokens, dtype=torch.float32):
82
- return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
83
-
84
-
85
- class CLIPTextModel_(torch.nn.Module):
86
- def __init__(self, config_dict, dtype, device, operations):
87
- num_layers = config_dict["num_hidden_layers"]
88
- embed_dim = config_dict["hidden_size"]
89
- heads = config_dict["num_attention_heads"]
90
- intermediate_size = config_dict["intermediate_size"]
91
- intermediate_activation = config_dict["hidden_act"]
92
- num_positions = config_dict["max_position_embeddings"]
93
- self.eos_token_id = config_dict["eos_token_id"]
94
-
95
- super().__init__()
96
- self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
97
- self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
98
- self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
99
-
100
- def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
101
- if embeds is not None:
102
- x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
103
- else:
104
- x = self.embeddings(input_tokens, dtype=dtype)
105
-
106
- mask = None
107
- if attention_mask is not None:
108
- mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
109
- mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max)
110
-
111
- causal_mask = torch.full((x.shape[1], x.shape[1]), -torch.finfo(x.dtype).max, dtype=x.dtype, device=x.device).triu_(1)
112
-
113
- if mask is not None:
114
- mask += causal_mask
115
- else:
116
- mask = causal_mask
117
-
118
- x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
119
- x = self.final_layer_norm(x)
120
- if i is not None and final_layer_norm_intermediate:
121
- i = self.final_layer_norm(i)
122
-
123
- if num_tokens is not None:
124
- pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
125
- else:
126
- pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
127
- return x, i, pooled_output
128
-
129
- class CLIPTextModel(torch.nn.Module):
130
- def __init__(self, config_dict, dtype, device, operations):
131
- super().__init__()
132
- self.num_layers = config_dict["num_hidden_layers"]
133
- self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
134
- embed_dim = config_dict["hidden_size"]
135
- self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
136
- self.dtype = dtype
137
-
138
- def get_input_embeddings(self):
139
- return self.text_model.embeddings.token_embedding
140
-
141
- def set_input_embeddings(self, embeddings):
142
- self.text_model.embeddings.token_embedding = embeddings
143
-
144
- def forward(self, *args, **kwargs):
145
- x = self.text_model(*args, **kwargs)
146
- out = self.text_projection(x[2])
147
- return (x[0], x[1], out, x[2])
148
-
149
-
150
- class CLIPVisionEmbeddings(torch.nn.Module):
151
- def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
152
- super().__init__()
153
-
154
- num_patches = (image_size // patch_size) ** 2
155
- if model_type == "siglip_vision_model":
156
- self.class_embedding = None
157
- patch_bias = True
158
- else:
159
- num_patches = num_patches + 1
160
- self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
161
- patch_bias = False
162
-
163
- self.patch_embedding = operations.Conv2d(
164
- in_channels=num_channels,
165
- out_channels=embed_dim,
166
- kernel_size=patch_size,
167
- stride=patch_size,
168
- bias=patch_bias,
169
- dtype=dtype,
170
- device=device
171
- )
172
-
173
- self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
174
-
175
- def forward(self, pixel_values):
176
- embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
177
- if self.class_embedding is not None:
178
- embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
179
- return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
180
-
181
-
182
- class CLIPVision(torch.nn.Module):
183
- def __init__(self, config_dict, dtype, device, operations):
184
- super().__init__()
185
- num_layers = config_dict["num_hidden_layers"]
186
- embed_dim = config_dict["hidden_size"]
187
- heads = config_dict["num_attention_heads"]
188
- intermediate_size = config_dict["intermediate_size"]
189
- intermediate_activation = config_dict["hidden_act"]
190
- model_type = config_dict["model_type"]
191
-
192
- self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
193
- if model_type == "siglip_vision_model":
194
- self.pre_layrnorm = lambda a: a
195
- self.output_layernorm = True
196
- else:
197
- self.pre_layrnorm = operations.LayerNorm(embed_dim)
198
- self.output_layernorm = False
199
- self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
200
- self.post_layernorm = operations.LayerNorm(embed_dim)
201
-
202
- def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
203
- x = self.embeddings(pixel_values)
204
- x = self.pre_layrnorm(x)
205
- #TODO: attention_mask?
206
- x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
207
- if self.output_layernorm:
208
- x = self.post_layernorm(x)
209
- pooled_output = x
210
- else:
211
- pooled_output = self.post_layernorm(x[:, 0, :])
212
- return x, i, pooled_output
213
-
214
- class LlavaProjector(torch.nn.Module):
215
- def __init__(self, in_dim, out_dim, dtype, device, operations):
216
- super().__init__()
217
- self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
218
- self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
219
-
220
- def forward(self, x):
221
- return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
222
-
223
- class CLIPVisionModelProjection(torch.nn.Module):
224
- def __init__(self, config_dict, dtype, device, operations):
225
- super().__init__()
226
- self.vision_model = CLIPVision(config_dict, dtype, device, operations)
227
- if "projection_dim" in config_dict:
228
- self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
229
- else:
230
- self.visual_projection = lambda a: a
231
-
232
- if "llava3" == config_dict.get("projector_type", None):
233
- self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
234
- else:
235
- self.multi_modal_projector = None
236
-
237
- def forward(self, *args, **kwargs):
238
- x = self.vision_model(*args, **kwargs)
239
- out = self.visual_projection(x[2])
240
- projected = None
241
- if self.multi_modal_projector is not None:
242
- projected = self.multi_modal_projector(x[1])
243
-
244
- return (x[0], x[1], out, projected)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision.py DELETED
@@ -1,148 +0,0 @@
1
- from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
2
- import os
3
- import torch
4
- import json
5
- import logging
6
-
7
- import comfy.ops
8
- import comfy.model_patcher
9
- import comfy.model_management
10
- import comfy.utils
11
- import comfy.clip_model
12
- import comfy.image_encoders.dino2
13
-
14
- class Output:
15
- def __getitem__(self, key):
16
- return getattr(self, key)
17
- def __setitem__(self, key, item):
18
- setattr(self, key, item)
19
-
20
- def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
21
- image = image[:, :, :, :3] if image.shape[3] > 3 else image
22
- mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
23
- std = torch.tensor(std, device=image.device, dtype=image.dtype)
24
- image = image.movedim(-1, 1)
25
- if not (image.shape[2] == size and image.shape[3] == size):
26
- if crop:
27
- scale = (size / min(image.shape[2], image.shape[3]))
28
- scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
29
- else:
30
- scale_size = (size, size)
31
-
32
- image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
33
- h = (image.shape[2] - size)//2
34
- w = (image.shape[3] - size)//2
35
- image = image[:,:,h:h+size,w:w+size]
36
- image = torch.clip((255. * image), 0, 255).round() / 255.0
37
- return (image - mean.view([3,1,1])) / std.view([3,1,1])
38
-
39
- IMAGE_ENCODERS = {
40
- "clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
41
- "siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
42
- "dinov2": comfy.image_encoders.dino2.Dinov2Model,
43
- }
44
-
45
- class ClipVisionModel():
46
- def __init__(self, json_config):
47
- with open(json_config) as f:
48
- config = json.load(f)
49
-
50
- self.image_size = config.get("image_size", 224)
51
- self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
52
- self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
53
- model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
54
- self.load_device = comfy.model_management.text_encoder_device()
55
- offload_device = comfy.model_management.text_encoder_offload_device()
56
- self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
57
- self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
58
- self.model.eval()
59
-
60
- self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
61
-
62
- def load_sd(self, sd):
63
- return self.model.load_state_dict(sd, strict=False)
64
-
65
- def get_sd(self):
66
- return self.model.state_dict()
67
-
68
- def encode_image(self, image, crop=True):
69
- comfy.model_management.load_model_gpu(self.patcher)
70
- pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
71
- out = self.model(pixel_values=pixel_values, intermediate_output=-2)
72
-
73
- outputs = Output()
74
- outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
75
- outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
76
- outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
77
- outputs["mm_projected"] = out[3]
78
- return outputs
79
-
80
- def convert_to_transformers(sd, prefix):
81
- sd_k = sd.keys()
82
- if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
83
- keys_to_replace = {
84
- "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
85
- "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
86
- "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
87
- "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
88
- "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
89
- "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
90
- "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
91
- }
92
-
93
- for x in keys_to_replace:
94
- if x in sd_k:
95
- sd[keys_to_replace[x]] = sd.pop(x)
96
-
97
- if "{}proj".format(prefix) in sd_k:
98
- sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
99
-
100
- sd = transformers_convert(sd, prefix, "vision_model.", 48)
101
- else:
102
- replace_prefix = {prefix: ""}
103
- sd = state_dict_prefix_replace(sd, replace_prefix)
104
- return sd
105
-
106
- def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
107
- if convert_keys:
108
- sd = convert_to_transformers(sd, prefix)
109
- if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
110
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
111
- elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
112
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
113
- elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
114
- embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
115
- if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
116
- if embed_shape == 729:
117
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
118
- elif embed_shape == 1024:
119
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
120
- elif embed_shape == 577:
121
- if "multi_modal_projector.linear_1.bias" in sd:
122
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
123
- else:
124
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
125
- else:
126
- json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
127
- elif "embeddings.patch_embeddings.projection.weight" in sd:
128
- json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
129
- else:
130
- return None
131
-
132
- clip = ClipVisionModel(json_config)
133
- m, u = clip.load_sd(sd)
134
- if len(m) > 0:
135
- logging.warning("missing clip vision: {}".format(m))
136
- u = set(u)
137
- keys = list(sd.keys())
138
- for k in keys:
139
- if k not in u:
140
- sd.pop(k)
141
- return clip
142
-
143
- def load(ckpt_path):
144
- sd = load_torch_file(ckpt_path)
145
- if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
146
- return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
147
- else:
148
- return load_clipvision_from_sd(sd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision_config_g.json DELETED
@@ -1,18 +0,0 @@
1
- {
2
- "attention_dropout": 0.0,
3
- "dropout": 0.0,
4
- "hidden_act": "gelu",
5
- "hidden_size": 1664,
6
- "image_size": 224,
7
- "initializer_factor": 1.0,
8
- "initializer_range": 0.02,
9
- "intermediate_size": 8192,
10
- "layer_norm_eps": 1e-05,
11
- "model_type": "clip_vision_model",
12
- "num_attention_heads": 16,
13
- "num_channels": 3,
14
- "num_hidden_layers": 48,
15
- "patch_size": 14,
16
- "projection_dim": 1280,
17
- "torch_dtype": "float32"
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision_config_h.json DELETED
@@ -1,18 +0,0 @@
1
- {
2
- "attention_dropout": 0.0,
3
- "dropout": 0.0,
4
- "hidden_act": "gelu",
5
- "hidden_size": 1280,
6
- "image_size": 224,
7
- "initializer_factor": 1.0,
8
- "initializer_range": 0.02,
9
- "intermediate_size": 5120,
10
- "layer_norm_eps": 1e-05,
11
- "model_type": "clip_vision_model",
12
- "num_attention_heads": 16,
13
- "num_channels": 3,
14
- "num_hidden_layers": 32,
15
- "patch_size": 14,
16
- "projection_dim": 1024,
17
- "torch_dtype": "float32"
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision_config_vitl.json DELETED
@@ -1,18 +0,0 @@
1
- {
2
- "attention_dropout": 0.0,
3
- "dropout": 0.0,
4
- "hidden_act": "quick_gelu",
5
- "hidden_size": 1024,
6
- "image_size": 224,
7
- "initializer_factor": 1.0,
8
- "initializer_range": 0.02,
9
- "intermediate_size": 4096,
10
- "layer_norm_eps": 1e-05,
11
- "model_type": "clip_vision_model",
12
- "num_attention_heads": 16,
13
- "num_channels": 3,
14
- "num_hidden_layers": 24,
15
- "patch_size": 14,
16
- "projection_dim": 768,
17
- "torch_dtype": "float32"
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision_config_vitl_336.json DELETED
@@ -1,18 +0,0 @@
1
- {
2
- "attention_dropout": 0.0,
3
- "dropout": 0.0,
4
- "hidden_act": "quick_gelu",
5
- "hidden_size": 1024,
6
- "image_size": 336,
7
- "initializer_factor": 1.0,
8
- "initializer_range": 0.02,
9
- "intermediate_size": 4096,
10
- "layer_norm_eps": 1e-5,
11
- "model_type": "clip_vision_model",
12
- "num_attention_heads": 16,
13
- "num_channels": 3,
14
- "num_hidden_layers": 24,
15
- "patch_size": 14,
16
- "projection_dim": 768,
17
- "torch_dtype": "float32"
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision_config_vitl_336_llava.json DELETED
@@ -1,19 +0,0 @@
1
- {
2
- "attention_dropout": 0.0,
3
- "dropout": 0.0,
4
- "hidden_act": "quick_gelu",
5
- "hidden_size": 1024,
6
- "image_size": 336,
7
- "initializer_factor": 1.0,
8
- "initializer_range": 0.02,
9
- "intermediate_size": 4096,
10
- "layer_norm_eps": 1e-5,
11
- "model_type": "clip_vision_model",
12
- "num_attention_heads": 16,
13
- "num_channels": 3,
14
- "num_hidden_layers": 24,
15
- "patch_size": 14,
16
- "projection_dim": 768,
17
- "projector_type": "llava3",
18
- "torch_dtype": "float32"
19
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision_siglip_384.json DELETED
@@ -1,13 +0,0 @@
1
- {
2
- "num_channels": 3,
3
- "hidden_act": "gelu_pytorch_tanh",
4
- "hidden_size": 1152,
5
- "image_size": 384,
6
- "intermediate_size": 4304,
7
- "model_type": "siglip_vision_model",
8
- "num_attention_heads": 16,
9
- "num_hidden_layers": 27,
10
- "patch_size": 14,
11
- "image_mean": [0.5, 0.5, 0.5],
12
- "image_std": [0.5, 0.5, 0.5]
13
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/clip_vision_siglip_512.json DELETED
@@ -1,13 +0,0 @@
1
- {
2
- "num_channels": 3,
3
- "hidden_act": "gelu_pytorch_tanh",
4
- "hidden_size": 1152,
5
- "image_size": 512,
6
- "intermediate_size": 4304,
7
- "model_type": "siglip_vision_model",
8
- "num_attention_heads": 16,
9
- "num_hidden_layers": 27,
10
- "patch_size": 16,
11
- "image_mean": [0.5, 0.5, 0.5],
12
- "image_std": [0.5, 0.5, 0.5]
13
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/comfy_types/README.md DELETED
@@ -1,43 +0,0 @@
1
- # Comfy Typing
2
- ## Type hinting for ComfyUI Node development
3
-
4
- This module provides type hinting and concrete convenience types for node developers.
5
- If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
6
-
7
- ```python
8
- from comfy.comfy_types import IO, ComfyNodeABC, CheckLazyMixin
9
-
10
- class ExampleNode(ComfyNodeABC):
11
- @classmethod
12
- def INPUT_TYPES(s) -> InputTypeDict:
13
- return {"required": {}}
14
- ```
15
-
16
- Full example is in [examples/example_nodes.py](examples/example_nodes.py).
17
-
18
- # Types
19
- A few primary types are documented below. More complete information is available via the docstrings on each type.
20
-
21
- ## `IO`
22
-
23
- A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
24
-
25
- - `ANY`: `"*"`
26
- - `NUMBER`: `"FLOAT,INT"`
27
- - `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
28
-
29
- ## `ComfyNodeABC`
30
-
31
- An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
32
-
33
- ### Type hinting for `INPUT_TYPES`
34
-
35
- ![INPUT_TYPES auto-completion in Visual Studio Code](examples/input_types.png)
36
-
37
- ### `INPUT_TYPES` return dict
38
-
39
- ![INPUT_TYPES return value type hinting in Visual Studio Code](examples/required_hint.png)
40
-
41
- ### Options for individual inputs
42
-
43
- ![INPUT_TYPES return value option auto-completion in Visual Studio Code](examples/input_options.png)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/comfy_types/__init__.py DELETED
@@ -1,46 +0,0 @@
1
- import torch
2
- from typing import Callable, Protocol, TypedDict, Optional, List
3
- from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin, FileLocator
4
-
5
-
6
- class UnetApplyFunction(Protocol):
7
- """Function signature protocol on comfy.model_base.BaseModel.apply_model"""
8
-
9
- def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor:
10
- pass
11
-
12
-
13
- class UnetApplyConds(TypedDict):
14
- """Optional conditions for unet apply function."""
15
-
16
- c_concat: Optional[torch.Tensor]
17
- c_crossattn: Optional[torch.Tensor]
18
- control: Optional[torch.Tensor]
19
- transformer_options: Optional[dict]
20
-
21
-
22
- class UnetParams(TypedDict):
23
- # Tensor of shape [B, C, H, W]
24
- input: torch.Tensor
25
- # Tensor of shape [B]
26
- timestep: torch.Tensor
27
- c: UnetApplyConds
28
- # List of [0, 1], [0], [1], ...
29
- # 0 means conditional, 1 means conditional unconditional
30
- cond_or_uncond: List[int]
31
-
32
-
33
- UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
34
-
35
-
36
- __all__ = [
37
- "UnetWrapperFunction",
38
- UnetApplyConds.__name__,
39
- UnetParams.__name__,
40
- UnetApplyFunction.__name__,
41
- IO.__name__,
42
- InputTypeDict.__name__,
43
- ComfyNodeABC.__name__,
44
- CheckLazyMixin.__name__,
45
- FileLocator.__name__,
46
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/comfy_types/examples/example_nodes.py DELETED
@@ -1,28 +0,0 @@
1
- from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
2
- from inspect import cleandoc
3
-
4
-
5
- class ExampleNode(ComfyNodeABC):
6
- """An example node that just adds 1 to an input integer.
7
-
8
- * Requires a modern IDE to provide any benefit (detail: an IDE configured with analysis paths etc).
9
- * This node is intended as an example for developers only.
10
- """
11
-
12
- DESCRIPTION = cleandoc(__doc__)
13
- CATEGORY = "examples"
14
-
15
- @classmethod
16
- def INPUT_TYPES(s) -> InputTypeDict:
17
- return {
18
- "required": {
19
- "input_int": (IO.INT, {"defaultInput": True}),
20
- }
21
- }
22
-
23
- RETURN_TYPES = (IO.INT,)
24
- RETURN_NAMES = ("input_plus_one",)
25
- FUNCTION = "execute"
26
-
27
- def execute(self, input_int: int):
28
- return (input_int + 1,)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/comfy_types/examples/input_options.png DELETED
Binary file (19.3 kB)
 
comfy/comfy_types/examples/input_types.png DELETED
Binary file (16.8 kB)
 
comfy/comfy_types/examples/required_hint.png DELETED
Binary file (19.3 kB)
 
comfy/comfy_types/node_typing.py DELETED
@@ -1,350 +0,0 @@
1
- """Comfy-specific type hinting"""
2
-
3
- from __future__ import annotations
4
- from typing import Literal, TypedDict, Optional
5
- from typing_extensions import NotRequired
6
- from abc import ABC, abstractmethod
7
- from enum import Enum
8
-
9
-
10
- class StrEnum(str, Enum):
11
- """Base class for string enums. Python's StrEnum is not available until 3.11."""
12
-
13
- def __str__(self) -> str:
14
- return self.value
15
-
16
-
17
- class IO(StrEnum):
18
- """Node input/output data types.
19
-
20
- Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
21
- """
22
-
23
- STRING = "STRING"
24
- IMAGE = "IMAGE"
25
- MASK = "MASK"
26
- LATENT = "LATENT"
27
- BOOLEAN = "BOOLEAN"
28
- INT = "INT"
29
- FLOAT = "FLOAT"
30
- COMBO = "COMBO"
31
- CONDITIONING = "CONDITIONING"
32
- SAMPLER = "SAMPLER"
33
- SIGMAS = "SIGMAS"
34
- GUIDER = "GUIDER"
35
- NOISE = "NOISE"
36
- CLIP = "CLIP"
37
- CONTROL_NET = "CONTROL_NET"
38
- VAE = "VAE"
39
- MODEL = "MODEL"
40
- LORA_MODEL = "LORA_MODEL"
41
- LOSS_MAP = "LOSS_MAP"
42
- CLIP_VISION = "CLIP_VISION"
43
- CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
44
- STYLE_MODEL = "STYLE_MODEL"
45
- GLIGEN = "GLIGEN"
46
- UPSCALE_MODEL = "UPSCALE_MODEL"
47
- AUDIO = "AUDIO"
48
- WEBCAM = "WEBCAM"
49
- POINT = "POINT"
50
- FACE_ANALYSIS = "FACE_ANALYSIS"
51
- BBOX = "BBOX"
52
- SEGS = "SEGS"
53
- VIDEO = "VIDEO"
54
-
55
- ANY = "*"
56
- """Always matches any type, but at a price.
57
-
58
- Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
59
- """
60
- NUMBER = "FLOAT,INT"
61
- """A float or an int - could be either"""
62
- PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
63
- """Could be any of: string, float, int, or bool"""
64
-
65
- def __ne__(self, value: object) -> bool:
66
- if self == "*" or value == "*":
67
- return False
68
- if not isinstance(value, str):
69
- return True
70
- a = frozenset(self.split(","))
71
- b = frozenset(value.split(","))
72
- return not (b.issubset(a) or a.issubset(b))
73
-
74
-
75
- class RemoteInputOptions(TypedDict):
76
- route: str
77
- """The route to the remote source."""
78
- refresh_button: bool
79
- """Specifies whether to show a refresh button in the UI below the widget."""
80
- control_after_refresh: Literal["first", "last"]
81
- """Specifies the control after the refresh button is clicked. If "first", the first item will be automatically selected, and so on."""
82
- timeout: int
83
- """The maximum amount of time to wait for a response from the remote source in milliseconds."""
84
- max_retries: int
85
- """The maximum number of retries before aborting the request."""
86
- refresh: int
87
- """The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
88
-
89
-
90
- class MultiSelectOptions(TypedDict):
91
- placeholder: NotRequired[str]
92
- """The placeholder text to display in the multi-select widget when no items are selected."""
93
- chip: NotRequired[bool]
94
- """Specifies whether to use chips instead of comma separated values for the multi-select widget."""
95
-
96
-
97
- class InputTypeOptions(TypedDict):
98
- """Provides type hinting for the return type of the INPUT_TYPES node function.
99
-
100
- Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
101
-
102
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
103
- """
104
-
105
- default: NotRequired[bool | str | float | int | list | tuple]
106
- """The default value of the widget"""
107
- defaultInput: NotRequired[bool]
108
- """@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
109
- - defaultInput on required inputs should be dropped.
110
- - defaultInput on optional inputs should be replaced with forceInput.
111
- Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
112
- """
113
- forceInput: NotRequired[bool]
114
- """Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
115
- lazy: NotRequired[bool]
116
- """Declares that this input uses lazy evaluation"""
117
- rawLink: NotRequired[bool]
118
- """When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
119
- tooltip: NotRequired[str]
120
- """Tooltip for the input (or widget), shown on pointer hover"""
121
- socketless: NotRequired[bool]
122
- """All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
123
- Available from frontend v1.17.5
124
- Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
125
- """
126
- widgetType: NotRequired[str]
127
- """Specifies a type to be used for widget initialization if different from the input type.
128
- Available from frontend v1.18.0
129
- https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
130
- # class InputTypeNumber(InputTypeOptions):
131
- # default: float | int
132
- min: NotRequired[float]
133
- """The minimum value of a number (``FLOAT`` | ``INT``)"""
134
- max: NotRequired[float]
135
- """The maximum value of a number (``FLOAT`` | ``INT``)"""
136
- step: NotRequired[float]
137
- """The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
138
- round: NotRequired[float]
139
- """Floats are rounded by this value (``FLOAT``)"""
140
- # class InputTypeBoolean(InputTypeOptions):
141
- # default: bool
142
- label_on: NotRequired[str]
143
- """The label to use in the UI when the bool is True (``BOOLEAN``)"""
144
- label_off: NotRequired[str]
145
- """The label to use in the UI when the bool is False (``BOOLEAN``)"""
146
- # class InputTypeString(InputTypeOptions):
147
- # default: str
148
- multiline: NotRequired[bool]
149
- """Use a multiline text box (``STRING``)"""
150
- placeholder: NotRequired[str]
151
- """Placeholder text to display in the UI when empty (``STRING``)"""
152
- # Deprecated:
153
- # defaultVal: str
154
- dynamicPrompts: NotRequired[bool]
155
- """Causes the front-end to evaluate dynamic prompts (``STRING``)"""
156
- # class InputTypeCombo(InputTypeOptions):
157
- image_upload: NotRequired[bool]
158
- """Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
159
- image_folder: NotRequired[Literal["input", "output", "temp"]]
160
- """Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
161
- """
162
- remote: NotRequired[RemoteInputOptions]
163
- """Specifies the configuration for a remote input.
164
- Available after ComfyUI frontend v1.9.7
165
- https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
166
- control_after_generate: NotRequired[bool]
167
- """Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
168
- options: NotRequired[list[str | int | float]]
169
- """COMBO type only. Specifies the selectable options for the combo widget.
170
- Prefer:
171
- ["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
172
- Over:
173
- [["Option 1", "Option 2", "Option 3"]]
174
- """
175
- multi_select: NotRequired[MultiSelectOptions]
176
- """COMBO type only. Specifies the configuration for a multi-select widget.
177
- Available after ComfyUI frontend v1.13.4
178
- https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
179
-
180
-
181
- class HiddenInputTypeDict(TypedDict):
182
- """Provides type hinting for the hidden entry of node INPUT_TYPES."""
183
-
184
- node_id: NotRequired[Literal["UNIQUE_ID"]]
185
- """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
186
- unique_id: NotRequired[Literal["UNIQUE_ID"]]
187
- """UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
188
- prompt: NotRequired[Literal["PROMPT"]]
189
- """PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
190
- extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]]
191
- """EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
192
- dynprompt: NotRequired[Literal["DYNPROMPT"]]
193
- """DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
194
-
195
-
196
- class InputTypeDict(TypedDict):
197
- """Provides type hinting for node INPUT_TYPES.
198
-
199
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
200
- """
201
-
202
- required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
203
- """Describes all inputs that must be connected for the node to execute."""
204
- optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
205
- """Describes inputs which do not need to be connected."""
206
- hidden: NotRequired[HiddenInputTypeDict]
207
- """Offers advanced functionality and server-client communication.
208
-
209
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
210
- """
211
-
212
-
213
- class ComfyNodeABC(ABC):
214
- """Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
215
-
216
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview
217
- """
218
-
219
- DESCRIPTION: str
220
- """Node description, shown as a tooltip when hovering over the node.
221
-
222
- Usage::
223
-
224
- # Explicitly define the description
225
- DESCRIPTION = "Example description here."
226
-
227
- # Use the docstring of the node class.
228
- DESCRIPTION = cleandoc(__doc__)
229
- """
230
- CATEGORY: str
231
- """The category of the node, as per the "Add Node" menu.
232
-
233
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#category
234
- """
235
- EXPERIMENTAL: bool
236
- """Flags a node as experimental, informing users that it may change or not work as expected."""
237
- DEPRECATED: bool
238
- """Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
239
- API_NODE: Optional[bool]
240
- """Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
241
-
242
- @classmethod
243
- @abstractmethod
244
- def INPUT_TYPES(s) -> InputTypeDict:
245
- """Defines node inputs.
246
-
247
- * Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
248
- * The ``optional`` key can be added to describe inputs which do not need to be connected.
249
- * The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
250
-
251
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#input-types
252
- """
253
- return {"required": {}}
254
-
255
- OUTPUT_NODE: bool
256
- """Flags this node as an output node, causing any inputs it requires to be executed.
257
-
258
- If a node is not connected to any output nodes, that node will not be executed. Usage::
259
-
260
- OUTPUT_NODE = True
261
-
262
- From the docs:
263
-
264
- By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
265
-
266
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
267
- """
268
- INPUT_IS_LIST: bool
269
- """A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
270
-
271
- All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
272
-
273
- From the docs:
274
-
275
- A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
276
-
277
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
278
- """
279
- OUTPUT_IS_LIST: tuple[bool, ...]
280
- """A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
281
-
282
- Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
283
-
284
- A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
285
-
286
- RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
287
- OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
288
-
289
- From the docs:
290
-
291
- In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
292
- the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
293
- specifying which outputs which should be so treated.
294
-
295
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
296
- """
297
-
298
- RETURN_TYPES: tuple[IO, ...]
299
- """A tuple representing the outputs of this node.
300
-
301
- Usage::
302
-
303
- RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
304
-
305
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
306
- """
307
- RETURN_NAMES: tuple[str, ...]
308
- """The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
309
-
310
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
311
- """
312
- OUTPUT_TOOLTIPS: tuple[str, ...]
313
- """A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
314
- FUNCTION: str
315
- """The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
316
-
317
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#function
318
- """
319
-
320
-
321
- class CheckLazyMixin:
322
- """Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
323
-
324
- def check_lazy_status(self, **kwargs) -> list[str]:
325
- """Returns a list of input names that should be evaluated.
326
-
327
- This basic mixin impl. requires all inputs.
328
-
329
- :kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
330
- When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
331
-
332
- Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
333
- Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
334
-
335
- Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lazy_evaluation#defining-check-lazy-status
336
- """
337
-
338
- need = [name for name in kwargs if kwargs[name] is None]
339
- return need
340
-
341
-
342
- class FileLocator(TypedDict):
343
- """Provides type hinting for the file location"""
344
-
345
- filename: str
346
- """The filename of the file."""
347
- subfolder: str
348
- """The subfolder of the file."""
349
- type: Literal["input", "output", "temp"]
350
- """The root folder of the file."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
comfy/conds.py DELETED
@@ -1,137 +0,0 @@
1
- import torch
2
- import math
3
- import comfy.utils
4
- import logging
5
-
6
-
7
- class CONDRegular:
8
- def __init__(self, cond):
9
- self.cond = cond
10
-
11
- def _copy_with(self, cond):
12
- return self.__class__(cond)
13
-
14
- def process_cond(self, batch_size, **kwargs):
15
- return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size))
16
-
17
- def can_concat(self, other):
18
- if self.cond.shape != other.cond.shape:
19
- return False
20
- if self.cond.device != other.cond.device:
21
- logging.warning("WARNING: conds not on same device, skipping concat.")
22
- return False
23
- return True
24
-
25
- def concat(self, others):
26
- conds = [self.cond]
27
- for x in others:
28
- conds.append(x.cond)
29
- return torch.cat(conds)
30
-
31
- def size(self):
32
- return list(self.cond.size())
33
-
34
-
35
- class CONDNoiseShape(CONDRegular):
36
- def process_cond(self, batch_size, area, **kwargs):
37
- data = self.cond
38
- if area is not None:
39
- dims = len(area) // 2
40
- for i in range(dims):
41
- data = data.narrow(i + 2, area[i + dims], area[i])
42
-
43
- return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size))
44
-
45
-
46
- class CONDCrossAttn(CONDRegular):
47
- def can_concat(self, other):
48
- s1 = self.cond.shape
49
- s2 = other.cond.shape
50
- if s1 != s2:
51
- if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
52
- return False
53
-
54
- mult_min = math.lcm(s1[1], s2[1])
55
- diff = mult_min // min(s1[1], s2[1])
56
- if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
57
- return False
58
- if self.cond.device != other.cond.device:
59
- logging.warning("WARNING: conds not on same device: skipping concat.")
60
- return False
61
- return True
62
-
63
- def concat(self, others):
64
- conds = [self.cond]
65
- crossattn_max_len = self.cond.shape[1]
66
- for x in others:
67
- c = x.cond
68
- crossattn_max_len = math.lcm(crossattn_max_len, c.shape[1])
69
- conds.append(c)
70
-
71
- out = []
72
- for c in conds:
73
- if c.shape[1] < crossattn_max_len:
74
- c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
75
- out.append(c)
76
- return torch.cat(out)
77
-
78
-
79
- class CONDConstant(CONDRegular):
80
- def __init__(self, cond):
81
- self.cond = cond
82
-
83
- def process_cond(self, batch_size, **kwargs):
84
- return self._copy_with(self.cond)
85
-
86
- def can_concat(self, other):
87
- if self.cond != other.cond:
88
- return False
89
- return True
90
-
91
- def concat(self, others):
92
- return self.cond
93
-
94
- def size(self):
95
- return [1]
96
-
97
-
98
- class CONDList(CONDRegular):
99
- def __init__(self, cond):
100
- self.cond = cond
101
-
102
- def process_cond(self, batch_size, **kwargs):
103
- out = []
104
- for c in self.cond:
105
- out.append(comfy.utils.repeat_to_batch_size(c, batch_size))
106
-
107
- return self._copy_with(out)
108
-
109
- def can_concat(self, other):
110
- if len(self.cond) != len(other.cond):
111
- return False
112
- for i in range(len(self.cond)):
113
- if self.cond[i].shape != other.cond[i].shape:
114
- return False
115
-
116
- return True
117
-
118
- def concat(self, others):
119
- out = []
120
- for i in range(len(self.cond)):
121
- o = [self.cond[i]]
122
- for x in others:
123
- o.append(x.cond[i])
124
- out.append(torch.cat(o))
125
-
126
- return out
127
-
128
- def size(self): # hackish implementation to make the mem estimation work
129
- o = 0
130
- c = 1
131
- for c in self.cond:
132
- size = c.size()
133
- o += math.prod(size)
134
- if len(size) > 1:
135
- c = size[1]
136
-
137
- return [1, c, o // c]