CVE-FactChecker / cve_factchecker /firebase_loader.py
NLPGenius's picture
fix firebase issues
186fe46
raw
history blame
34.4 kB
import os
import requests
import time
from typing import List, Dict, Any, Optional
from dataclasses import dataclass
from datetime import datetime
from .models import NewsArticle
@dataclass
class FirebaseConfig:
api_key: str
auth_domain: str
project_id: str
storage_bucket: str
messaging_sender_id: str
app_id: str
# Collection names
ARTICLES_COLLECTION: str = "articles"
ENGLISH_ARTICLES_COLLECTION: str = "Articles" # Dedicated English articles collection (capital A)
FIREBASE_CONFIG = FirebaseConfig(
api_key=os.environ.get("FIREBASE_API_KEY", "AIzaSyAX2ZBIB5lkBEEgXydi__Qlb0WBpUmntCk"),
auth_domain=os.environ.get("FIREBASE_AUTH_DOMAIN", "cve-articles-b4f4f.firebaseapp.com"),
project_id=os.environ.get("FIREBASE_PROJECT_ID", "cve-articles-b4f4f"),
storage_bucket=os.environ.get("FIREBASE_STORAGE_BUCKET", "cve-articles-b4f4f.firebasestorage.app"),
messaging_sender_id=os.environ.get("FIREBASE_MESSAGING_SENDER_ID", "682945772298"),
app_id=os.environ.get("FIREBASE_APP_ID", "1:682945772298:web:b0d1dab0c7e07f83fad8f3")
)
class FirebaseNewsLoader:
def __init__(self, config: Optional[FirebaseConfig] = None):
self.config = config or FIREBASE_CONFIG
self.project_id = self.config.project_id
self.api_key = self.config.api_key
def fetch_articles(self, limit: int = 5000, language: str = "English") -> List[NewsArticle]:
"""Fetch articles with optional limit, language filter, and rate limiting handling."""
try:
collection_name = "articles"
# Use structured query to filter by language
if language:
return self._fetch_articles_with_filter(collection_name, limit, language)
else:
return self._fetch_articles_simple(collection_name, limit)
except Exception as e:
print(f"❌ Firebase error: {e}")
return []
def fetch_articles_by_language(self, language: str = "English", limit: int = 5000) -> List[NewsArticle]:
"""Fetch articles filtered by language - convenience method."""
return self.fetch_articles(limit=limit, language=language)
def fetch_english_articles(self, limit: int = 5000) -> List[NewsArticle]:
"""
Fetch articles from the dedicated English articles collection.
This mirrors the JavaScript fetchEnglishArticles function.
"""
try:
collection_name = self.config.ENGLISH_ARTICLES_COLLECTION
print(f"πŸ” Fetching English articles from '{collection_name}' collection...")
# Use simple GET request to fetch from the English articles collection
base_url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents/{collection_name}"
articles: List[NewsArticle] = []
page_token: Optional[str] = None
batch_size = min(300, limit or 300) # Firestore max pageSize
remaining = limit
while True:
if remaining is not None and remaining <= 0:
break
page_size = batch_size if remaining is None else min(batch_size, remaining)
params = {
"key": self.config.api_key,
"pageSize": page_size
}
if page_token:
params["pageToken"] = page_token
print(f"πŸ“‘ Requesting {page_size} articles from English collection...")
resp = requests.get(base_url, params=params, timeout=30)
if resp.status_code == 429: # Rate limit
retry_after = int(resp.headers.get('Retry-After', 30))
print(f"⏳ Rate limited, waiting {retry_after}s...")
time.sleep(retry_after)
continue
elif resp.status_code != 200:
print(f"❌ Failed to fetch English articles: {resp.status_code}")
if resp.status_code == 404:
print(f"πŸ’‘ Collection '{collection_name}' not found. Falling back to language filtering...")
return self.fetch_articles(limit=limit, language="English")
elif resp.status_code >= 500:
print(f"πŸ”„ Server error {resp.status_code}, retrying...")
time.sleep(2)
continue
else:
print(f"πŸ”„ Falling back to language filtering due to error {resp.status_code}")
return self.fetch_articles(limit=limit, language="English")
data = resp.json()
docs = data.get("documents", [])
if not docs:
print("πŸ“­ No more documents in English collection")
break
# Convert documents to NewsArticle objects
batch_articles = []
for doc in docs:
article = self._convert_english_doc(doc)
if article:
batch_articles.append(article)
articles.extend(batch_articles)
print(f"βœ… Processed {len(batch_articles)} articles from batch")
if remaining is not None:
remaining -= len(docs)
# Check for next page
page_token = data.get("nextPageToken")
if not page_token:
break
# Small delay to avoid rate limiting
time.sleep(0.1)
print(f"🎯 Successfully fetched {len(articles)} English articles")
return articles
except Exception as e:
print(f"❌ Error fetching English articles: {e}")
import traceback
traceback.print_exc()
# Fallback to the old method
print("πŸ”„ Falling back to language filtering method...")
return self.fetch_articles(limit=limit, language="English")
def _convert_english_doc(self, doc: Dict[str, Any]) -> Optional[NewsArticle]:
"""
Convert Firebase document from English articles collection to NewsArticle.
Optimized for the specific structure of English articles.
"""
try:
doc_name = doc.get("name", "")
doc_id = doc_name.split("/")[-1] if doc_name else "unknown"
fields = doc.get("fields", {})
# Extract field values with proper type handling
data: Dict[str, Any] = {}
for fname, fval in fields.items():
if fval and isinstance(fval, dict):
# Handle different Firestore value types
if "stringValue" in fval:
data[fname] = fval["stringValue"]
elif "integerValue" in fval:
data[fname] = int(fval["integerValue"])
elif "doubleValue" in fval:
data[fname] = float(fval["doubleValue"])
elif "timestampValue" in fval:
data[fname] = fval["timestampValue"]
elif "booleanValue" in fval:
data[fname] = fval["booleanValue"]
else:
# Get the first available value type
ftype = list(fval.keys())[0]
data[fname] = fval[ftype]
# Enhanced field mapping for English articles collection
# Try multiple field name variations for content
content_candidates = [
"content", "Content", "article_text", "Article_text", "articleText",
"text", "Text", "body", "Body", "description", "Description",
"summary", "Summary", "article_content", "articleContent", "full_text"
]
content = ""
content_field_used = None
for candidate in content_candidates:
if candidate in data and data[candidate]:
content = str(data[candidate]).strip()
content_field_used = candidate
break
# Try multiple field name variations for title
title_candidates = [
"title", "Title", "headline", "Headline", "subject", "Subject",
"name", "Name", "article_title", "articleTitle"
]
title = "Untitled"
for candidate in title_candidates:
if candidate in data and data[candidate]:
title = str(data[candidate]).strip()
break
# Try multiple field name variations for URL
url_candidates = [
"url", "URL", "link", "Link", "href", "source_url", "sourceUrl", "web_url"
]
url = f"firebase://english_articles/{doc_id}"
for candidate in url_candidates:
if candidate in data and data[candidate]:
url_value = str(data[candidate]).strip()
if url_value.startswith(('http://', 'https://')):
url = url_value
break
# Source information
source_candidates = ["source", "Source", "publisher", "Publisher", "site", "Site"]
source = "English Articles Collection"
for candidate in source_candidates:
if candidate in data and data[candidate]:
source = str(data[candidate]).strip()
break
# Date information
date_candidates = [
"published_date", "publishedDate", "date", "Date", "created_at", "createdAt",
"timestamp", "publish_time", "publication_date"
]
published_date = datetime.now().isoformat()
for candidate in date_candidates:
if candidate in data and data[candidate]:
published_date = str(data[candidate])
break
# Quality check - ensure we have substantial content
if len(content) < 100:
print(f"⚠️ English article {doc_id[:8]}... has minimal content:")
print(f" Content field '{content_field_used}': {len(content)} chars")
print(f" Available fields: {list(data.keys())}")
# Try to combine multiple fields if content is insufficient
combined_content = []
if title and title != "Untitled":
combined_content.append(f"Title: {title}")
for field_name, field_value in data.items():
if (isinstance(field_value, str) and
len(field_value) > 50 and
field_name not in content_candidates[:3]): # Not already used
combined_content.append(f"{field_name}: {field_value}")
if combined_content:
content = "\n\n".join(combined_content)
print(f" πŸ“ Combined content from multiple fields: {len(content)} chars")
article = NewsArticle(
title=title,
content=content,
url=url,
source=source,
published_date=published_date,
scraped_date=data.get("scraped_date", data.get("scrapedAt", datetime.now().isoformat())),
article_id=doc_id,
)
# Add language marker (since these are from English collection)
article.language = "english" # Match the JavaScript implementation
return article
except Exception as e:
print(f"⚠️ Error converting English article {doc_id}: {e}")
return None
def _fetch_articles_with_filter(self, collection_name: str, limit: int, language: str) -> List[NewsArticle]:
"""Fetch articles using Firestore structured query with language filter."""
try:
# Firestore structured query endpoint
query_url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents:runQuery"
remaining = None if (limit is None or (isinstance(limit, int) and limit <= 0)) else int(limit)
articles: List[NewsArticle] = []
# First, let's check what the data actually looks like
print(f"πŸ” Analyzing Firebase data structure for language filtering...")
# Get a small sample first to understand the data structure
sample_query = {
"structuredQuery": {
"from": [{"collectionId": collection_name}],
"limit": 3
}
}
headers = {'Content-Type': 'application/json'}
params = {"key": self.api_key}
sample_resp = requests.post(query_url, json=sample_query, headers=headers, params=params, timeout=30)
if sample_resp.status_code == 200:
sample_data = sample_resp.json()
print(f"πŸ“‹ Sample response contains {len(sample_data) if isinstance(sample_data, list) else 1} items")
# Analyze the structure of the first document
if isinstance(sample_data, list) and len(sample_data) > 0:
first_item = sample_data[0]
if "document" in first_item:
doc = first_item["document"]
if "fields" in doc:
fields = doc["fields"]
available_fields = list(fields.keys())
print(f"πŸ“Š Available fields: {available_fields}")
# Check language field specifically
if "language" in fields:
lang_field = fields["language"]
print(f"πŸ”€ Language field structure: {lang_field}")
if "stringValue" in lang_field:
print(f"πŸ”€ Language value: '{lang_field['stringValue']}'")
else:
print("⚠️ No 'language' field found! Looking for alternatives...")
# Check for alternative language field names
lang_candidates = [f for f in available_fields if 'lang' in f.lower()]
if lang_candidates:
print(f"πŸ” Possible language fields: {lang_candidates}")
# Use the first candidate
alt_field = lang_candidates[0]
print(f"πŸ”„ Using '{alt_field}' as language field")
language_field = alt_field
else:
print("❌ No language field found. Falling back to content analysis.")
return self._fetch_with_content_filter(collection_name, limit, language)
# Sample a few more documents to see language distribution
lang_values = set()
for item in sample_data:
if "document" in item and "fields" in item["document"]:
doc_fields = item["document"]["fields"]
if "language" in doc_fields and "stringValue" in doc_fields["language"]:
lang_values.add(doc_fields["language"]["stringValue"])
print(f"🌐 Language values found in sample: {list(lang_values)}")
elif isinstance(sample_data, dict) and "documents" in sample_data:
# Different response format
documents = sample_data["documents"]
print(f"πŸ“‹ Found {len(documents)} documents in response")
if documents:
first_doc = documents[0]
if "fields" in first_doc:
fields = first_doc["fields"]
available_fields = list(fields.keys())
print(f"πŸ“Š Available fields: {available_fields}")
else:
print(f"❌ Sample query failed: {sample_resp.status_code}")
# Continue anyway with best guess
# Now try to query with language filter
language_variants = [language, language.lower(), language.upper(), language.capitalize()]
for lang_variant in language_variants:
print(f"πŸ” Trying language filter: '{lang_variant}'")
query_data = {
"structuredQuery": {
"from": [{"collectionId": collection_name}],
"where": {
"fieldFilter": {
"field": {"fieldPath": "language"},
"op": "EQUAL",
"value": {"stringValue": lang_variant}
}
},
"limit": min(remaining or 1000, 1000)
}
}
resp = requests.post(query_url, json=query_data, headers=headers, params=params, timeout=30)
if resp.status_code == 200:
data = resp.json()
if isinstance(data, list):
filtered_count = len(data)
print(f"πŸ“ˆ Found {filtered_count} articles with language='{lang_variant}'")
if filtered_count > 0:
# Process the results
for result in data:
if "document" in result:
doc = result["document"]
art = self._convert_doc(doc)
if art:
articles.append(art)
elif "fields" in result: # Direct document format
art = self._convert_doc(result)
if art:
articles.append(art)
# If we got good results, continue with this variant
if len(articles) >= 5: # Lower threshold
print(f"βœ… Using language variant '{lang_variant}' - found {len(articles)} articles")
break
elif isinstance(data, dict) and "documents" in data:
# Alternative response format
documents = data["documents"]
filtered_count = len(documents)
print(f"πŸ“ˆ Found {filtered_count} documents with language='{lang_variant}'")
if filtered_count > 0:
for doc in documents:
art = self._convert_doc(doc)
if art:
articles.append(art)
if len(articles) >= 5:
print(f"βœ… Using language variant '{lang_variant}' - found {len(articles)} articles")
break
else:
print(f"❌ Query failed for '{lang_variant}': {resp.status_code}")
time.sleep(0.2) # Small delay between attempts
# If we still don't have enough articles, fall back to content filtering
if len(articles) < 100:
print(f"⚠️ Only found {len(articles)} articles with language filter. Trying content-based filtering...")
fallback_articles = self._fetch_with_content_filter(collection_name, remaining or 1000, language)
# Merge results, avoiding duplicates
existing_ids = {art.article_id for art in articles}
for art in fallback_articles:
if art.article_id not in existing_ids:
articles.append(art)
if remaining and len(articles) >= remaining:
break
print(f"βœ… Fetched {len(articles)} {language} articles from Firebase")
return articles[:remaining] if remaining else articles
except Exception as e:
print(f"❌ Error in filtered fetch: {e}")
import traceback
traceback.print_exc()
# Fallback to simple fetch
return self._fetch_articles_simple(collection_name, limit)
def _fetch_with_content_filter(self, collection_name: str, limit: int, language: str) -> List[NewsArticle]:
"""Fetch articles and filter by content analysis (fallback method)."""
print(f"πŸ”„ Fetching articles and filtering by content for {language}...")
# Fetch more articles to filter from
raw_articles = self._fetch_articles_simple(collection_name, min(2000, limit * 3))
filtered_articles = []
for article in raw_articles:
if self._is_likely_language(article.content, language):
filtered_articles.append(article)
if len(filtered_articles) >= limit:
break
print(f"πŸ“Š Content filtering: {len(filtered_articles)} {language} articles from {len(raw_articles)} total")
return filtered_articles
def _is_likely_language(self, text: str, target_language: str) -> bool:
"""Simple heuristic to check if text is likely in the target language."""
if not text or len(text) < 50:
return False
if target_language.lower() in ["english", "en"]:
return self._is_likely_english(text)
# For other languages, we'll need different heuristics
# For now, default to True
return True
def _is_likely_english(self, text: str) -> bool:
"""Simple heuristic to check if text is likely English."""
if not text or len(text) < 50:
return False
# Common English words and patterns
english_indicators = {
'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'i', 'it', 'for', 'not', 'on', 'with',
'he', 'as', 'you', 'do', 'at', 'this', 'but', 'his', 'by', 'from', 'they', 'we', 'say', 'her',
'she', 'or', 'an', 'will', 'my', 'one', 'all', 'would', 'there', 'their', 'what', 'so', 'up',
'out', 'if', 'about', 'who', 'get', 'which', 'go', 'me', 'when', 'make', 'can', 'like', 'time',
'security', 'vulnerability', 'attack', 'system', 'software', 'data', 'network', 'computer',
'application', 'server', 'database', 'information', 'technology', 'cyber', 'malware', 'breach'
}
# Convert to lowercase and split into words
words = text.lower().replace(',', ' ').replace('.', ' ').split()[:100] # Check first 100 words
if len(words) < 10:
return False
# Count English indicators
english_count = 0
for word in words:
# Remove punctuation for matching
clean_word = ''.join(c for c in word if c.isalnum())
if clean_word in english_indicators:
english_count += 1
ratio = english_count / len(words)
return ratio > 0.15 # At least 15% English indicators
def _fetch_articles_simple(self, collection_name: str, limit: int) -> List[NewsArticle]:
"""Original simple fetch method without filtering."""
try:
base_url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents/{collection_name}"
remaining = None if (limit is None or (isinstance(limit, int) and limit <= 0)) else int(limit)
page_token: Optional[str] = None
batch_size = min(100, 300) # Smaller batch size to avoid rate limiting
articles: List[NewsArticle] = []
request_count = 0
max_requests = 50 # Limit total requests to avoid rate limiting
while True:
if remaining is not None and remaining <= 0:
break
if request_count >= max_requests:
print(f"⏳ Reached max requests limit ({max_requests}), stopping to avoid rate limits")
break
page_size = batch_size if remaining is None else min(batch_size, remaining)
params = {"key": self.api_key, "pageSize": page_size}
if page_token:
params["pageToken"] = page_token
# Add delay between requests to avoid rate limiting
if request_count > 0:
time.sleep(0.2) # 200ms delay between requests
resp = requests.get(base_url, params=params, timeout=30)
request_count += 1
if resp.status_code == 429: # Rate limit
retry_after = int(resp.headers.get('Retry-After', 60))
print(f"❌ Firebase API rate limited: waiting {retry_after}s")
time.sleep(retry_after)
continue
elif resp.status_code != 200:
print(f"❌ Firebase API failed: {resp.status_code}")
if resp.status_code >= 500: # Server error, might be temporary
time.sleep(5)
continue
break
data = resp.json()
docs = data.get("documents", [])
if not docs:
break
for d in docs:
art = self._convert_doc(d)
if art:
articles.append(art)
if remaining is not None:
remaining -= len(docs)
page_token = data.get("nextPageToken")
if not page_token:
break
return articles
except Exception as e:
print(f"❌ Firebase error: {e}")
return []
def _convert_doc(self, doc: Dict[str, Any]) -> Optional[NewsArticle]:
"""Convert Firebase document to NewsArticle with improved field mapping."""
try:
doc_name = doc.get("name", "")
doc_id = doc_name.split("/")[-1] if doc_name else "unknown"
fields = doc.get("fields", {})
# Extract field values with better handling
data: Dict[str, Any] = {}
for fname, fval in fields.items():
if fval and isinstance(fval, dict):
# Handle different Firestore value types
if "stringValue" in fval:
data[fname] = fval["stringValue"]
elif "integerValue" in fval:
data[fname] = fval["integerValue"]
elif "doubleValue" in fval:
data[fname] = fval["doubleValue"]
elif "timestampValue" in fval:
data[fname] = fval["timestampValue"]
elif "booleanValue" in fval:
data[fname] = fval["booleanValue"]
else:
# Get the first available value type
ftype = list(fval.keys())[0]
data[fname] = fval[ftype]
# Try multiple field name variations for content
content_candidates = [
"Article_text", "article_text", "content", "Content",
"text", "Text", "body", "Body", "description", "Description",
"summary", "Summary", "article_content", "articleContent"
]
content = ""
content_field = None
for candidate in content_candidates:
if candidate in data and data[candidate]:
content = str(data[candidate]).strip()
content_field = candidate
break
# Try multiple field name variations for title
title_candidates = [
"Title", "title", "headline", "Headline", "subject", "Subject", "name", "Name"
]
title = "Untitled"
for candidate in title_candidates:
if candidate in data and data[candidate]:
title = str(data[candidate]).strip()
break
# Try multiple field name variations for URL
url_candidates = [
"URL", "url", "link", "Link", "href", "source_url", "sourceUrl"
]
url = f"firebase://doc/{doc_id}"
for candidate in url_candidates:
if candidate in data and data[candidate]:
url = str(data[candidate]).strip()
break
# Debug output for empty content
if not content or len(content) < 50:
available_fields = list(data.keys())
print(f"⚠️ Article {doc_id[:8]}... has minimal content:")
print(f" Content field '{content_field}': {len(content)} chars")
print(f" Available fields: {available_fields}")
print(f" Sample data: {str(data)[:200]}...")
article = NewsArticle(
title=title,
content=content,
url=url,
source=data.get("source", data.get("Source", "Firebase")),
published_date=data.get("Date", data.get("date", data.get("published_date", data.get("createdAt", datetime.now().isoformat())))),
scraped_date=data.get("scrapedAt", data.get("scraped_date", data.get("createdAt", datetime.now().isoformat()))),
article_id=doc_id,
)
return article
except Exception as e:
print(f"⚠️ Document conversion error for {doc_id}: {e}")
return None
def load_news_articles(self, collection_name: str = "Articles", limit: int = 100) -> List[NewsArticle]:
return self.fetch_articles(collection_name, limit)
def analyze_schema(self, collection_name: str = "Articles") -> Dict[str, Any]:
try:
url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents/{collection_name}"
params = {"key": self.api_key, "pageSize": 5}
response = requests.get(url, params=params, timeout=30)
if response.status_code == 200:
data = response.json()
documents = data.get("documents", [])
if not documents:
return {"error": "empty", "collection": collection_name}
all_fields = set()
sample_data = []
for doc in documents:
fields = doc.get("fields", {})
field_names = list(fields.keys())
all_fields.update(field_names)
sample_values: Dict[str, Any] = {}
for fname, fdata in fields.items():
if fdata and isinstance(fdata, dict):
ftype = list(fdata.keys())[0]
sample_values[fname] = str(fdata[ftype])[:100]
doc_id = doc.get("name", "").split("/")[-1]
sample_data.append({"id": doc_id, "fields": field_names, "sample": sample_values})
return {
"collection": collection_name,
"document_count": len(documents),
"unique_fields": sorted(list(all_fields)),
"field_count": len(all_fields),
"sample_documents": sample_data,
}
return {"error": f"status {response.status_code}", "collection": collection_name}
except Exception as e:
return {"error": str(e), "collection": collection_name}
def get_collections_info(self) -> List[Dict[str, Any]]:
possible = ["Articles", "articles"]
results: List[Dict[str, Any]] = []
seen = set()
for name in possible:
if name in seen:
continue
arts = self.fetch_articles(name, limit=5)
if arts:
results.append({
"name": name,
"document_count": "β‰₯" + str(len(arts)),
"sample_titles": [a.title for a in arts[:3]],
})
seen.add(name)
if not results:
results.append({"name": "Articles", "document_count": 0})
return results