Spaces:
Sleeping
Sleeping
File size: 34,399 Bytes
89fd50e e06a21d 89fd50e 186fe46 89fd50e e06a21d 3c552a3 186fe46 e06a21d 48cec82 e06a21d 48cec82 e06a21d 48cec82 e06a21d 48cec82 e06a21d 48cec82 3c552a3 e06a21d 48cec82 3c552a3 48cec82 e06a21d 48cec82 e06a21d 48cec82 e06a21d 48cec82 3c552a3 48cec82 3c552a3 48cec82 3c552a3 e06a21d 48cec82 e06a21d 48cec82 e06a21d 48cec82 e06a21d 48cec82 e06a21d 48cec82 e06a21d 89fd50e e06a21d 89fd50e e06a21d 89fd50e e06a21d 89fd50e e06a21d 89fd50e e06a21d 89fd50e e06a21d 89fd50e 48cec82 89fd50e 48cec82 89fd50e 48cec82 89fd50e 48cec82 89fd50e 48cec82 89fd50e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 |
import os
import requests
import time
from typing import List, Dict, Any, Optional
from dataclasses import dataclass
from datetime import datetime
from .models import NewsArticle
@dataclass
class FirebaseConfig:
api_key: str
auth_domain: str
project_id: str
storage_bucket: str
messaging_sender_id: str
app_id: str
# Collection names
ARTICLES_COLLECTION: str = "articles"
ENGLISH_ARTICLES_COLLECTION: str = "Articles" # Dedicated English articles collection (capital A)
FIREBASE_CONFIG = FirebaseConfig(
api_key=os.environ.get("FIREBASE_API_KEY", "AIzaSyAX2ZBIB5lkBEEgXydi__Qlb0WBpUmntCk"),
auth_domain=os.environ.get("FIREBASE_AUTH_DOMAIN", "cve-articles-b4f4f.firebaseapp.com"),
project_id=os.environ.get("FIREBASE_PROJECT_ID", "cve-articles-b4f4f"),
storage_bucket=os.environ.get("FIREBASE_STORAGE_BUCKET", "cve-articles-b4f4f.firebasestorage.app"),
messaging_sender_id=os.environ.get("FIREBASE_MESSAGING_SENDER_ID", "682945772298"),
app_id=os.environ.get("FIREBASE_APP_ID", "1:682945772298:web:b0d1dab0c7e07f83fad8f3")
)
class FirebaseNewsLoader:
def __init__(self, config: Optional[FirebaseConfig] = None):
self.config = config or FIREBASE_CONFIG
self.project_id = self.config.project_id
self.api_key = self.config.api_key
def fetch_articles(self, limit: int = 5000, language: str = "English") -> List[NewsArticle]:
"""Fetch articles with optional limit, language filter, and rate limiting handling."""
try:
collection_name = "articles"
# Use structured query to filter by language
if language:
return self._fetch_articles_with_filter(collection_name, limit, language)
else:
return self._fetch_articles_simple(collection_name, limit)
except Exception as e:
print(f"β Firebase error: {e}")
return []
def fetch_articles_by_language(self, language: str = "English", limit: int = 5000) -> List[NewsArticle]:
"""Fetch articles filtered by language - convenience method."""
return self.fetch_articles(limit=limit, language=language)
def fetch_english_articles(self, limit: int = 5000) -> List[NewsArticle]:
"""
Fetch articles from the dedicated English articles collection.
This mirrors the JavaScript fetchEnglishArticles function.
"""
try:
collection_name = self.config.ENGLISH_ARTICLES_COLLECTION
print(f"π Fetching English articles from '{collection_name}' collection...")
# Use simple GET request to fetch from the English articles collection
base_url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents/{collection_name}"
articles: List[NewsArticle] = []
page_token: Optional[str] = None
batch_size = min(300, limit or 300) # Firestore max pageSize
remaining = limit
while True:
if remaining is not None and remaining <= 0:
break
page_size = batch_size if remaining is None else min(batch_size, remaining)
params = {
"key": self.config.api_key,
"pageSize": page_size
}
if page_token:
params["pageToken"] = page_token
print(f"π‘ Requesting {page_size} articles from English collection...")
resp = requests.get(base_url, params=params, timeout=30)
if resp.status_code == 429: # Rate limit
retry_after = int(resp.headers.get('Retry-After', 30))
print(f"β³ Rate limited, waiting {retry_after}s...")
time.sleep(retry_after)
continue
elif resp.status_code != 200:
print(f"β Failed to fetch English articles: {resp.status_code}")
if resp.status_code == 404:
print(f"π‘ Collection '{collection_name}' not found. Falling back to language filtering...")
return self.fetch_articles(limit=limit, language="English")
elif resp.status_code >= 500:
print(f"π Server error {resp.status_code}, retrying...")
time.sleep(2)
continue
else:
print(f"π Falling back to language filtering due to error {resp.status_code}")
return self.fetch_articles(limit=limit, language="English")
data = resp.json()
docs = data.get("documents", [])
if not docs:
print("π No more documents in English collection")
break
# Convert documents to NewsArticle objects
batch_articles = []
for doc in docs:
article = self._convert_english_doc(doc)
if article:
batch_articles.append(article)
articles.extend(batch_articles)
print(f"β
Processed {len(batch_articles)} articles from batch")
if remaining is not None:
remaining -= len(docs)
# Check for next page
page_token = data.get("nextPageToken")
if not page_token:
break
# Small delay to avoid rate limiting
time.sleep(0.1)
print(f"π― Successfully fetched {len(articles)} English articles")
return articles
except Exception as e:
print(f"β Error fetching English articles: {e}")
import traceback
traceback.print_exc()
# Fallback to the old method
print("π Falling back to language filtering method...")
return self.fetch_articles(limit=limit, language="English")
def _convert_english_doc(self, doc: Dict[str, Any]) -> Optional[NewsArticle]:
"""
Convert Firebase document from English articles collection to NewsArticle.
Optimized for the specific structure of English articles.
"""
try:
doc_name = doc.get("name", "")
doc_id = doc_name.split("/")[-1] if doc_name else "unknown"
fields = doc.get("fields", {})
# Extract field values with proper type handling
data: Dict[str, Any] = {}
for fname, fval in fields.items():
if fval and isinstance(fval, dict):
# Handle different Firestore value types
if "stringValue" in fval:
data[fname] = fval["stringValue"]
elif "integerValue" in fval:
data[fname] = int(fval["integerValue"])
elif "doubleValue" in fval:
data[fname] = float(fval["doubleValue"])
elif "timestampValue" in fval:
data[fname] = fval["timestampValue"]
elif "booleanValue" in fval:
data[fname] = fval["booleanValue"]
else:
# Get the first available value type
ftype = list(fval.keys())[0]
data[fname] = fval[ftype]
# Enhanced field mapping for English articles collection
# Try multiple field name variations for content
content_candidates = [
"content", "Content", "article_text", "Article_text", "articleText",
"text", "Text", "body", "Body", "description", "Description",
"summary", "Summary", "article_content", "articleContent", "full_text"
]
content = ""
content_field_used = None
for candidate in content_candidates:
if candidate in data and data[candidate]:
content = str(data[candidate]).strip()
content_field_used = candidate
break
# Try multiple field name variations for title
title_candidates = [
"title", "Title", "headline", "Headline", "subject", "Subject",
"name", "Name", "article_title", "articleTitle"
]
title = "Untitled"
for candidate in title_candidates:
if candidate in data and data[candidate]:
title = str(data[candidate]).strip()
break
# Try multiple field name variations for URL
url_candidates = [
"url", "URL", "link", "Link", "href", "source_url", "sourceUrl", "web_url"
]
url = f"firebase://english_articles/{doc_id}"
for candidate in url_candidates:
if candidate in data and data[candidate]:
url_value = str(data[candidate]).strip()
if url_value.startswith(('http://', 'https://')):
url = url_value
break
# Source information
source_candidates = ["source", "Source", "publisher", "Publisher", "site", "Site"]
source = "English Articles Collection"
for candidate in source_candidates:
if candidate in data and data[candidate]:
source = str(data[candidate]).strip()
break
# Date information
date_candidates = [
"published_date", "publishedDate", "date", "Date", "created_at", "createdAt",
"timestamp", "publish_time", "publication_date"
]
published_date = datetime.now().isoformat()
for candidate in date_candidates:
if candidate in data and data[candidate]:
published_date = str(data[candidate])
break
# Quality check - ensure we have substantial content
if len(content) < 100:
print(f"β οΈ English article {doc_id[:8]}... has minimal content:")
print(f" Content field '{content_field_used}': {len(content)} chars")
print(f" Available fields: {list(data.keys())}")
# Try to combine multiple fields if content is insufficient
combined_content = []
if title and title != "Untitled":
combined_content.append(f"Title: {title}")
for field_name, field_value in data.items():
if (isinstance(field_value, str) and
len(field_value) > 50 and
field_name not in content_candidates[:3]): # Not already used
combined_content.append(f"{field_name}: {field_value}")
if combined_content:
content = "\n\n".join(combined_content)
print(f" π Combined content from multiple fields: {len(content)} chars")
article = NewsArticle(
title=title,
content=content,
url=url,
source=source,
published_date=published_date,
scraped_date=data.get("scraped_date", data.get("scrapedAt", datetime.now().isoformat())),
article_id=doc_id,
)
# Add language marker (since these are from English collection)
article.language = "english" # Match the JavaScript implementation
return article
except Exception as e:
print(f"β οΈ Error converting English article {doc_id}: {e}")
return None
def _fetch_articles_with_filter(self, collection_name: str, limit: int, language: str) -> List[NewsArticle]:
"""Fetch articles using Firestore structured query with language filter."""
try:
# Firestore structured query endpoint
query_url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents:runQuery"
remaining = None if (limit is None or (isinstance(limit, int) and limit <= 0)) else int(limit)
articles: List[NewsArticle] = []
# First, let's check what the data actually looks like
print(f"π Analyzing Firebase data structure for language filtering...")
# Get a small sample first to understand the data structure
sample_query = {
"structuredQuery": {
"from": [{"collectionId": collection_name}],
"limit": 3
}
}
headers = {'Content-Type': 'application/json'}
params = {"key": self.api_key}
sample_resp = requests.post(query_url, json=sample_query, headers=headers, params=params, timeout=30)
if sample_resp.status_code == 200:
sample_data = sample_resp.json()
print(f"π Sample response contains {len(sample_data) if isinstance(sample_data, list) else 1} items")
# Analyze the structure of the first document
if isinstance(sample_data, list) and len(sample_data) > 0:
first_item = sample_data[0]
if "document" in first_item:
doc = first_item["document"]
if "fields" in doc:
fields = doc["fields"]
available_fields = list(fields.keys())
print(f"π Available fields: {available_fields}")
# Check language field specifically
if "language" in fields:
lang_field = fields["language"]
print(f"π€ Language field structure: {lang_field}")
if "stringValue" in lang_field:
print(f"π€ Language value: '{lang_field['stringValue']}'")
else:
print("β οΈ No 'language' field found! Looking for alternatives...")
# Check for alternative language field names
lang_candidates = [f for f in available_fields if 'lang' in f.lower()]
if lang_candidates:
print(f"π Possible language fields: {lang_candidates}")
# Use the first candidate
alt_field = lang_candidates[0]
print(f"π Using '{alt_field}' as language field")
language_field = alt_field
else:
print("β No language field found. Falling back to content analysis.")
return self._fetch_with_content_filter(collection_name, limit, language)
# Sample a few more documents to see language distribution
lang_values = set()
for item in sample_data:
if "document" in item and "fields" in item["document"]:
doc_fields = item["document"]["fields"]
if "language" in doc_fields and "stringValue" in doc_fields["language"]:
lang_values.add(doc_fields["language"]["stringValue"])
print(f"π Language values found in sample: {list(lang_values)}")
elif isinstance(sample_data, dict) and "documents" in sample_data:
# Different response format
documents = sample_data["documents"]
print(f"π Found {len(documents)} documents in response")
if documents:
first_doc = documents[0]
if "fields" in first_doc:
fields = first_doc["fields"]
available_fields = list(fields.keys())
print(f"π Available fields: {available_fields}")
else:
print(f"β Sample query failed: {sample_resp.status_code}")
# Continue anyway with best guess
# Now try to query with language filter
language_variants = [language, language.lower(), language.upper(), language.capitalize()]
for lang_variant in language_variants:
print(f"π Trying language filter: '{lang_variant}'")
query_data = {
"structuredQuery": {
"from": [{"collectionId": collection_name}],
"where": {
"fieldFilter": {
"field": {"fieldPath": "language"},
"op": "EQUAL",
"value": {"stringValue": lang_variant}
}
},
"limit": min(remaining or 1000, 1000)
}
}
resp = requests.post(query_url, json=query_data, headers=headers, params=params, timeout=30)
if resp.status_code == 200:
data = resp.json()
if isinstance(data, list):
filtered_count = len(data)
print(f"π Found {filtered_count} articles with language='{lang_variant}'")
if filtered_count > 0:
# Process the results
for result in data:
if "document" in result:
doc = result["document"]
art = self._convert_doc(doc)
if art:
articles.append(art)
elif "fields" in result: # Direct document format
art = self._convert_doc(result)
if art:
articles.append(art)
# If we got good results, continue with this variant
if len(articles) >= 5: # Lower threshold
print(f"β
Using language variant '{lang_variant}' - found {len(articles)} articles")
break
elif isinstance(data, dict) and "documents" in data:
# Alternative response format
documents = data["documents"]
filtered_count = len(documents)
print(f"π Found {filtered_count} documents with language='{lang_variant}'")
if filtered_count > 0:
for doc in documents:
art = self._convert_doc(doc)
if art:
articles.append(art)
if len(articles) >= 5:
print(f"β
Using language variant '{lang_variant}' - found {len(articles)} articles")
break
else:
print(f"β Query failed for '{lang_variant}': {resp.status_code}")
time.sleep(0.2) # Small delay between attempts
# If we still don't have enough articles, fall back to content filtering
if len(articles) < 100:
print(f"β οΈ Only found {len(articles)} articles with language filter. Trying content-based filtering...")
fallback_articles = self._fetch_with_content_filter(collection_name, remaining or 1000, language)
# Merge results, avoiding duplicates
existing_ids = {art.article_id for art in articles}
for art in fallback_articles:
if art.article_id not in existing_ids:
articles.append(art)
if remaining and len(articles) >= remaining:
break
print(f"β
Fetched {len(articles)} {language} articles from Firebase")
return articles[:remaining] if remaining else articles
except Exception as e:
print(f"β Error in filtered fetch: {e}")
import traceback
traceback.print_exc()
# Fallback to simple fetch
return self._fetch_articles_simple(collection_name, limit)
def _fetch_with_content_filter(self, collection_name: str, limit: int, language: str) -> List[NewsArticle]:
"""Fetch articles and filter by content analysis (fallback method)."""
print(f"π Fetching articles and filtering by content for {language}...")
# Fetch more articles to filter from
raw_articles = self._fetch_articles_simple(collection_name, min(2000, limit * 3))
filtered_articles = []
for article in raw_articles:
if self._is_likely_language(article.content, language):
filtered_articles.append(article)
if len(filtered_articles) >= limit:
break
print(f"π Content filtering: {len(filtered_articles)} {language} articles from {len(raw_articles)} total")
return filtered_articles
def _is_likely_language(self, text: str, target_language: str) -> bool:
"""Simple heuristic to check if text is likely in the target language."""
if not text or len(text) < 50:
return False
if target_language.lower() in ["english", "en"]:
return self._is_likely_english(text)
# For other languages, we'll need different heuristics
# For now, default to True
return True
def _is_likely_english(self, text: str) -> bool:
"""Simple heuristic to check if text is likely English."""
if not text or len(text) < 50:
return False
# Common English words and patterns
english_indicators = {
'the', 'be', 'to', 'of', 'and', 'a', 'in', 'that', 'have', 'i', 'it', 'for', 'not', 'on', 'with',
'he', 'as', 'you', 'do', 'at', 'this', 'but', 'his', 'by', 'from', 'they', 'we', 'say', 'her',
'she', 'or', 'an', 'will', 'my', 'one', 'all', 'would', 'there', 'their', 'what', 'so', 'up',
'out', 'if', 'about', 'who', 'get', 'which', 'go', 'me', 'when', 'make', 'can', 'like', 'time',
'security', 'vulnerability', 'attack', 'system', 'software', 'data', 'network', 'computer',
'application', 'server', 'database', 'information', 'technology', 'cyber', 'malware', 'breach'
}
# Convert to lowercase and split into words
words = text.lower().replace(',', ' ').replace('.', ' ').split()[:100] # Check first 100 words
if len(words) < 10:
return False
# Count English indicators
english_count = 0
for word in words:
# Remove punctuation for matching
clean_word = ''.join(c for c in word if c.isalnum())
if clean_word in english_indicators:
english_count += 1
ratio = english_count / len(words)
return ratio > 0.15 # At least 15% English indicators
def _fetch_articles_simple(self, collection_name: str, limit: int) -> List[NewsArticle]:
"""Original simple fetch method without filtering."""
try:
base_url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents/{collection_name}"
remaining = None if (limit is None or (isinstance(limit, int) and limit <= 0)) else int(limit)
page_token: Optional[str] = None
batch_size = min(100, 300) # Smaller batch size to avoid rate limiting
articles: List[NewsArticle] = []
request_count = 0
max_requests = 50 # Limit total requests to avoid rate limiting
while True:
if remaining is not None and remaining <= 0:
break
if request_count >= max_requests:
print(f"β³ Reached max requests limit ({max_requests}), stopping to avoid rate limits")
break
page_size = batch_size if remaining is None else min(batch_size, remaining)
params = {"key": self.api_key, "pageSize": page_size}
if page_token:
params["pageToken"] = page_token
# Add delay between requests to avoid rate limiting
if request_count > 0:
time.sleep(0.2) # 200ms delay between requests
resp = requests.get(base_url, params=params, timeout=30)
request_count += 1
if resp.status_code == 429: # Rate limit
retry_after = int(resp.headers.get('Retry-After', 60))
print(f"β Firebase API rate limited: waiting {retry_after}s")
time.sleep(retry_after)
continue
elif resp.status_code != 200:
print(f"β Firebase API failed: {resp.status_code}")
if resp.status_code >= 500: # Server error, might be temporary
time.sleep(5)
continue
break
data = resp.json()
docs = data.get("documents", [])
if not docs:
break
for d in docs:
art = self._convert_doc(d)
if art:
articles.append(art)
if remaining is not None:
remaining -= len(docs)
page_token = data.get("nextPageToken")
if not page_token:
break
return articles
except Exception as e:
print(f"β Firebase error: {e}")
return []
def _convert_doc(self, doc: Dict[str, Any]) -> Optional[NewsArticle]:
"""Convert Firebase document to NewsArticle with improved field mapping."""
try:
doc_name = doc.get("name", "")
doc_id = doc_name.split("/")[-1] if doc_name else "unknown"
fields = doc.get("fields", {})
# Extract field values with better handling
data: Dict[str, Any] = {}
for fname, fval in fields.items():
if fval and isinstance(fval, dict):
# Handle different Firestore value types
if "stringValue" in fval:
data[fname] = fval["stringValue"]
elif "integerValue" in fval:
data[fname] = fval["integerValue"]
elif "doubleValue" in fval:
data[fname] = fval["doubleValue"]
elif "timestampValue" in fval:
data[fname] = fval["timestampValue"]
elif "booleanValue" in fval:
data[fname] = fval["booleanValue"]
else:
# Get the first available value type
ftype = list(fval.keys())[0]
data[fname] = fval[ftype]
# Try multiple field name variations for content
content_candidates = [
"Article_text", "article_text", "content", "Content",
"text", "Text", "body", "Body", "description", "Description",
"summary", "Summary", "article_content", "articleContent"
]
content = ""
content_field = None
for candidate in content_candidates:
if candidate in data and data[candidate]:
content = str(data[candidate]).strip()
content_field = candidate
break
# Try multiple field name variations for title
title_candidates = [
"Title", "title", "headline", "Headline", "subject", "Subject", "name", "Name"
]
title = "Untitled"
for candidate in title_candidates:
if candidate in data and data[candidate]:
title = str(data[candidate]).strip()
break
# Try multiple field name variations for URL
url_candidates = [
"URL", "url", "link", "Link", "href", "source_url", "sourceUrl"
]
url = f"firebase://doc/{doc_id}"
for candidate in url_candidates:
if candidate in data and data[candidate]:
url = str(data[candidate]).strip()
break
# Debug output for empty content
if not content or len(content) < 50:
available_fields = list(data.keys())
print(f"β οΈ Article {doc_id[:8]}... has minimal content:")
print(f" Content field '{content_field}': {len(content)} chars")
print(f" Available fields: {available_fields}")
print(f" Sample data: {str(data)[:200]}...")
article = NewsArticle(
title=title,
content=content,
url=url,
source=data.get("source", data.get("Source", "Firebase")),
published_date=data.get("Date", data.get("date", data.get("published_date", data.get("createdAt", datetime.now().isoformat())))),
scraped_date=data.get("scrapedAt", data.get("scraped_date", data.get("createdAt", datetime.now().isoformat()))),
article_id=doc_id,
)
return article
except Exception as e:
print(f"β οΈ Document conversion error for {doc_id}: {e}")
return None
def load_news_articles(self, collection_name: str = "Articles", limit: int = 100) -> List[NewsArticle]:
return self.fetch_articles(collection_name, limit)
def analyze_schema(self, collection_name: str = "Articles") -> Dict[str, Any]:
try:
url = f"https://firestore.googleapis.com/v1/projects/{self.project_id}/databases/(default)/documents/{collection_name}"
params = {"key": self.api_key, "pageSize": 5}
response = requests.get(url, params=params, timeout=30)
if response.status_code == 200:
data = response.json()
documents = data.get("documents", [])
if not documents:
return {"error": "empty", "collection": collection_name}
all_fields = set()
sample_data = []
for doc in documents:
fields = doc.get("fields", {})
field_names = list(fields.keys())
all_fields.update(field_names)
sample_values: Dict[str, Any] = {}
for fname, fdata in fields.items():
if fdata and isinstance(fdata, dict):
ftype = list(fdata.keys())[0]
sample_values[fname] = str(fdata[ftype])[:100]
doc_id = doc.get("name", "").split("/")[-1]
sample_data.append({"id": doc_id, "fields": field_names, "sample": sample_values})
return {
"collection": collection_name,
"document_count": len(documents),
"unique_fields": sorted(list(all_fields)),
"field_count": len(all_fields),
"sample_documents": sample_data,
}
return {"error": f"status {response.status_code}", "collection": collection_name}
except Exception as e:
return {"error": str(e), "collection": collection_name}
def get_collections_info(self) -> List[Dict[str, Any]]:
possible = ["Articles", "articles"]
results: List[Dict[str, Any]] = []
seen = set()
for name in possible:
if name in seen:
continue
arts = self.fetch_articles(name, limit=5)
if arts:
results.append({
"name": name,
"document_count": "β₯" + str(len(arts)),
"sample_titles": [a.title for a in arts[:3]],
})
seen.add(name)
if not results:
results.append({"name": "Articles", "document_count": 0})
return results
|