Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import os | |
| import json | |
| import time | |
| import tempfile | |
| from typing import List, Dict, Any, Optional | |
| # OpenAI for LLM (optional) | |
| try: | |
| from openai import OpenAI | |
| except Exception: # pragma: no cover | |
| OpenAI = None # type: ignore | |
| # LangChain & RAG | |
| from langchain.schema import Document | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| # TTS | |
| try: | |
| from gtts import gTTS | |
| except Exception: # pragma: no cover | |
| gTTS = None # type: ignore | |
| # --- INTEGRATION: Import the new, sophisticated prompts from prompts.py --- | |
| from .prompts import ( | |
| SYSTEM_TEMPLATE, ANSWER_TEMPLATE_CALM, ANSWER_TEMPLATE_ADQ, | |
| SAFETY_GUARDRAILS, RISK_FOOTER, render_emotion_guidelines, CLASSIFICATION_PROMPT | |
| ) | |
| # ----------------------------- | |
| # NLU Classification Function (NEW) | |
| # ----------------------------- | |
| def detect_tags_from_query(query: str, behavior_options: list, emotion_options: list) -> Dict[str, Optional[str]]: | |
| """Uses an LLM call to classify the user's query into a behavior and emotion tag.""" | |
| # Format the options for the prompt | |
| behavior_str = ", ".join(f'"{opt}"' for opt in behavior_options if opt != "None") | |
| emotion_str = ", ".join(f'"{opt}"' for opt in emotion_options if opt != "None") | |
| # Build the classification prompt | |
| prompt = CLASSIFICATION_PROMPT.format( | |
| behavior_options=behavior_str, | |
| emotion_options=emotion_str, | |
| query=query | |
| ) | |
| messages = [ | |
| {"role": "system", "content": "You are a helpful NLU classification assistant. Respond only with the JSON object requested."}, | |
| {"role": "user", "content": prompt} | |
| ] | |
| # Call the LLM with low temperature for a deterministic response | |
| response_str = call_llm(messages, temperature=0.1) | |
| # Safely parse the JSON response | |
| try: | |
| # The LLM might return the JSON inside a markdown block | |
| clean_response = response_str.strip().replace("```json", "").replace("```", "") | |
| result = json.loads(clean_response) | |
| # Validate the response | |
| behavior = result.get("detected_behavior") | |
| emotion = result.get("detected_emotion") | |
| return { | |
| "detected_behavior": behavior if behavior in behavior_options else "None", | |
| "detected_emotion": emotion if emotion in emotion_options else "None" | |
| } | |
| except (json.JSONDecodeError, AttributeError): | |
| # Fallback if the LLM response is not valid JSON | |
| return {"detected_behavior": "None", "detected_emotion": "None"} | |
| # ----------------------------- | |
| # Embeddings & VectorStore | |
| # ----------------------------- | |
| # (This entire section remains unchanged) | |
| def _default_embeddings(): | |
| """Lightweight, widely available model.""" | |
| model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2") | |
| return HuggingFaceEmbeddings(model_name=model_name) | |
| def build_or_load_vectorstore(docs: List[Document], index_path: str) -> FAISS: | |
| os.makedirs(os.path.dirname(index_path), exist_ok=True) | |
| if os.path.isdir(index_path) and os.path.exists(os.path.join(index_path, "index.faiss")): | |
| try: | |
| return FAISS.load_local(index_path, _default_embeddings(), allow_dangerous_deserialization=True) | |
| except Exception: | |
| pass | |
| vs = FAISS.from_documents(docs, _default_embeddings()) | |
| vs.save_local(index_path) | |
| return vs | |
| def texts_from_jsonl(path: str) -> List[Document]: | |
| """Load a JSONL file, parsing text and all relevant metadata.""" | |
| out: List[Document] = [] | |
| try: | |
| with open(path, "r", encoding="utf-8") as f: | |
| for i, line in enumerate(f): | |
| line = line.strip() | |
| if not line: continue | |
| try: | |
| obj = json.loads(line) | |
| except Exception: | |
| obj = {"text": line} | |
| txt = obj.get("text") or obj.get("content") or obj.get("dialogue") or "" | |
| if not isinstance(txt, str) or not txt.strip(): continue | |
| md = {"source": os.path.basename(path), "chunk": i} | |
| if "metadata" in obj and isinstance(obj["metadata"], dict): | |
| md.update(obj["metadata"]) | |
| for k in ("scene_description", "tags", "theme", "behaviors", "role", "emotion"): | |
| if k in obj: | |
| if k == 'behaviors' and isinstance(obj[k], str): | |
| md[k] = [tag.strip() for tag in obj[k].split(',')] | |
| else: | |
| md[k] = obj[k] | |
| out.append(Document(page_content=txt, metadata=md)) | |
| except Exception: | |
| return [] | |
| return out | |
| def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS: | |
| docs: List[Document] = [] | |
| for p in (sample_paths or []): | |
| try: | |
| if p.lower().endswith(".jsonl"): | |
| docs.extend(texts_from_jsonl(p)) | |
| else: | |
| with open(p, "r", encoding="utf-8", errors="ignore") as fh: | |
| docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)})) | |
| except Exception: | |
| continue | |
| if not docs: | |
| docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})] | |
| return build_or_load_vectorstore(docs, index_path=index_path) | |
| # ----------------------------- | |
| # LLM Call | |
| # ----------------------------- | |
| # (This entire section remains unchanged) | |
| def _openai_client() -> Optional[OpenAI]: | |
| api_key = os.getenv("OPENAI_API_KEY", "").strip() | |
| return OpenAI(api_key=api_key) if api_key and OpenAI else None | |
| def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6) -> str: | |
| """Call OpenAI Chat Completions if available; else return a fallback.""" | |
| client = _openai_client() | |
| model = os.getenv("OPENAI_MODEL", "gpt-4o-mini") | |
| if not client: | |
| return "(Offline Mode: OpenAI API key not configured.)" | |
| try: | |
| resp = client.chat.completions.create(model=model, messages=messages, temperature=float(temperature)) | |
| return (resp.choices[0].message.content or "").strip() | |
| except Exception as e: | |
| return f"[LLM API Error: {e}]" | |
| # ----------------------------- | |
| # Prompting & RAG Chain | |
| # ----------------------------- | |
| # (This section is unchanged as the logic now lives in _answer_fn) | |
| def _format_sources(docs: List[Document]) -> List[str]: | |
| return list(set(d.metadata.get("source", "unknown") for d in docs)) | |
| def make_rag_chain( | |
| vs: FAISS, | |
| *, | |
| role: str = "patient", | |
| temperature: float = 0.6, | |
| language: str = "English", | |
| patient_name: str = "the patient", | |
| caregiver_name: str = "the caregiver", | |
| tone: str = "warm", | |
| ): | |
| """Returns a callable that performs the complete, context-aware RAG process.""" | |
| retriever = vs.as_retriever(search_kwargs={"k": 5}) | |
| def _format_docs(docs: List[Document]) -> str: | |
| if not docs: return "(No relevant information found in the knowledge base.)" | |
| return "\n".join([f"- {d.page_content.strip()}" for d in docs]) | |
| def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None) -> Dict[str, Any]: | |
| search_filter = {} | |
| if scenario_tag and scenario_tag != "None": | |
| search_filter["behaviors"] = scenario_tag.lower() | |
| if emotion_tag and emotion_tag != "None": | |
| search_filter["emotion"] = emotion_tag.lower() | |
| if search_filter: | |
| docs = vs.similarity_search(query, k=5, filter=search_filter) | |
| else: | |
| docs = retriever.invoke(query) | |
| context = _format_docs(docs) | |
| first_emotion = None | |
| for doc in docs: | |
| if "emotion" in doc.metadata and doc.metadata["emotion"]: | |
| emotion_data = doc.metadata["emotion"] | |
| if isinstance(emotion_data, list): | |
| first_emotion = emotion_data[0] | |
| else: | |
| first_emotion = emotion_data | |
| break | |
| emotions_context = render_emotion_guidelines(first_emotion) | |
| is_tagged_scenario = (scenario_tag and scenario_tag != "None") or (emotion_tag and emotion_tag != "None") or (first_emotion is not None) | |
| template = ANSWER_TEMPLATE_ADQ if is_tagged_scenario else ANSWER_TEMPLATE_CALM | |
| user_prompt = template.format( | |
| context=context, | |
| question=query, | |
| scenario_tag=scenario_tag, | |
| emotions_context=emotions_context, | |
| role=role, | |
| language=language | |
| ) | |
| system_message = SYSTEM_TEMPLATE.format( | |
| tone=tone, language=language, patient_name=patient_name or "the patient", | |
| caregiver_name=caregiver_name or "the caregiver", guardrails=SAFETY_GUARDRAILS, | |
| ) | |
| messages = [{"role": "system", "content": system_message}] | |
| messages.extend(chat_history) | |
| messages.append({"role": "user", "content": user_prompt}) | |
| answer = call_llm(messages, temperature=temperature) | |
| high_risk_scenarios = ["exit_seeking", "wandering", "elopement"] | |
| if scenario_tag and scenario_tag.lower() in high_risk_scenarios: | |
| answer += f"\n\n---\n{RISK_FOOTER}" | |
| return {"answer": answer, "sources": _format_sources(docs)} | |
| return _answer_fn | |
| def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]: | |
| """A clean wrapper to pass arguments from the UI to the RAG chain.""" | |
| if not callable(chain): | |
| return {"answer": "[Error: RAG chain is not callable]", "sources": []} | |
| chat_history = kwargs.get("chat_history", []) | |
| scenario_tag = kwargs.get("scenario_tag") | |
| emotion_tag = kwargs.get("emotion_tag") | |
| try: | |
| return chain(question, chat_history=chat_history, scenario_tag=scenario_tag, emotion_tag=emotion_tag) | |
| except Exception as e: | |
| print(f"ERROR in answer_query: {e}") | |
| return {"answer": f"[Error executing chain: {e}]", "sources": []} | |
| # ----------------------------- | |
| # TTS & Transcription | |
| # ----------------------------- | |
| # (This entire section remains unchanged) | |
| def synthesize_tts(text: str, lang: str = "en"): | |
| """Returns a path to a temporary audio file.""" | |
| if not text or gTTS is None: return None | |
| try: | |
| fd, path = tempfile.mkstemp(suffix=".mp3") | |
| os.close(fd) | |
| tts = gTTS(text=text, lang=(lang or "en")) | |
| tts.save(path) | |
| return path | |
| except Exception: | |
| return None | |
| def transcribe_audio(filepath: str, lang: str = "en"): | |
| """Transcribes an audio file using OpenAI's Whisper API.""" | |
| client = _openai_client() | |
| if not client: | |
| return "[Transcription failed: API key not configured]" | |
| api_args = { | |
| "model": "whisper-1", | |
| } | |
| if lang and lang != "auto": | |
| api_args["language"] = lang | |
| with open(filepath, "rb") as audio_file: | |
| transcription = client.audio.transcriptions.create(file=audio_file, **api_args) | |
| return transcription.text | |