Spaces:
Sleeping
Sleeping
File size: 11,296 Bytes
c5eec51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
from __future__ import annotations
import os
import json
import time
import tempfile
from typing import List, Dict, Any, Optional
# OpenAI for LLM (optional)
try:
from openai import OpenAI
except Exception: # pragma: no cover
OpenAI = None # type: ignore
# LangChain & RAG
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
# TTS
try:
from gtts import gTTS
except Exception: # pragma: no cover
gTTS = None # type: ignore
# --- INTEGRATION: Import the new, sophisticated prompts from prompts.py ---
from .prompts import (
SYSTEM_TEMPLATE, ANSWER_TEMPLATE_CALM, ANSWER_TEMPLATE_ADQ,
SAFETY_GUARDRAILS, RISK_FOOTER, render_emotion_guidelines, CLASSIFICATION_PROMPT
)
# -----------------------------
# NLU Classification Function (NEW)
# -----------------------------
def detect_tags_from_query(query: str, behavior_options: list, emotion_options: list) -> Dict[str, Optional[str]]:
"""Uses an LLM call to classify the user's query into a behavior and emotion tag."""
# Format the options for the prompt
behavior_str = ", ".join(f'"{opt}"' for opt in behavior_options if opt != "None")
emotion_str = ", ".join(f'"{opt}"' for opt in emotion_options if opt != "None")
# Build the classification prompt
prompt = CLASSIFICATION_PROMPT.format(
behavior_options=behavior_str,
emotion_options=emotion_str,
query=query
)
messages = [
{"role": "system", "content": "You are a helpful NLU classification assistant. Respond only with the JSON object requested."},
{"role": "user", "content": prompt}
]
# Call the LLM with low temperature for a deterministic response
response_str = call_llm(messages, temperature=0.1)
# Safely parse the JSON response
try:
# The LLM might return the JSON inside a markdown block
clean_response = response_str.strip().replace("```json", "").replace("```", "")
result = json.loads(clean_response)
# Validate the response
behavior = result.get("detected_behavior")
emotion = result.get("detected_emotion")
return {
"detected_behavior": behavior if behavior in behavior_options else "None",
"detected_emotion": emotion if emotion in emotion_options else "None"
}
except (json.JSONDecodeError, AttributeError):
# Fallback if the LLM response is not valid JSON
return {"detected_behavior": "None", "detected_emotion": "None"}
# -----------------------------
# Embeddings & VectorStore
# -----------------------------
# (This entire section remains unchanged)
def _default_embeddings():
"""Lightweight, widely available model."""
model_name = os.getenv("EMBEDDINGS_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
return HuggingFaceEmbeddings(model_name=model_name)
def build_or_load_vectorstore(docs: List[Document], index_path: str) -> FAISS:
os.makedirs(os.path.dirname(index_path), exist_ok=True)
if os.path.isdir(index_path) and os.path.exists(os.path.join(index_path, "index.faiss")):
try:
return FAISS.load_local(index_path, _default_embeddings(), allow_dangerous_deserialization=True)
except Exception:
pass
vs = FAISS.from_documents(docs, _default_embeddings())
vs.save_local(index_path)
return vs
def texts_from_jsonl(path: str) -> List[Document]:
"""Load a JSONL file, parsing text and all relevant metadata."""
out: List[Document] = []
try:
with open(path, "r", encoding="utf-8") as f:
for i, line in enumerate(f):
line = line.strip()
if not line: continue
try:
obj = json.loads(line)
except Exception:
obj = {"text": line}
txt = obj.get("text") or obj.get("content") or obj.get("dialogue") or ""
if not isinstance(txt, str) or not txt.strip(): continue
md = {"source": os.path.basename(path), "chunk": i}
if "metadata" in obj and isinstance(obj["metadata"], dict):
md.update(obj["metadata"])
for k in ("scene_description", "tags", "theme", "behaviors", "role", "emotion"):
if k in obj:
if k == 'behaviors' and isinstance(obj[k], str):
md[k] = [tag.strip() for tag in obj[k].split(',')]
else:
md[k] = obj[k]
out.append(Document(page_content=txt, metadata=md))
except Exception:
return []
return out
def bootstrap_vectorstore(sample_paths: List[str] | None = None, index_path: str = "data/faiss_index") -> FAISS:
docs: List[Document] = []
for p in (sample_paths or []):
try:
if p.lower().endswith(".jsonl"):
docs.extend(texts_from_jsonl(p))
else:
with open(p, "r", encoding="utf-8", errors="ignore") as fh:
docs.append(Document(page_content=fh.read(), metadata={"source": os.path.basename(p)}))
except Exception:
continue
if not docs:
docs = [Document(page_content="(empty index)", metadata={"source": "placeholder"})]
return build_or_load_vectorstore(docs, index_path=index_path)
# -----------------------------
# LLM Call
# -----------------------------
# (This entire section remains unchanged)
def _openai_client() -> Optional[OpenAI]:
api_key = os.getenv("OPENAI_API_KEY", "").strip()
return OpenAI(api_key=api_key) if api_key and OpenAI else None
def call_llm(messages: List[Dict[str, str]], temperature: float = 0.6) -> str:
"""Call OpenAI Chat Completions if available; else return a fallback."""
client = _openai_client()
model = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
if not client:
return "(Offline Mode: OpenAI API key not configured.)"
try:
resp = client.chat.completions.create(model=model, messages=messages, temperature=float(temperature))
return (resp.choices[0].message.content or "").strip()
except Exception as e:
return f"[LLM API Error: {e}]"
# -----------------------------
# Prompting & RAG Chain
# -----------------------------
# (This section is unchanged as the logic now lives in _answer_fn)
def _format_sources(docs: List[Document]) -> List[str]:
return list(set(d.metadata.get("source", "unknown") for d in docs))
def make_rag_chain(
vs: FAISS,
*,
role: str = "patient",
temperature: float = 0.6,
language: str = "English",
patient_name: str = "the patient",
caregiver_name: str = "the caregiver",
tone: str = "warm",
):
"""Returns a callable that performs the complete, context-aware RAG process."""
retriever = vs.as_retriever(search_kwargs={"k": 5})
def _format_docs(docs: List[Document]) -> str:
if not docs: return "(No relevant information found in the knowledge base.)"
return "\n".join([f"- {d.page_content.strip()}" for d in docs])
def _answer_fn(query: str, chat_history: List[Dict[str, str]], scenario_tag: Optional[str] = None, emotion_tag: Optional[str] = None) -> Dict[str, Any]:
search_filter = {}
if scenario_tag and scenario_tag != "None":
search_filter["behaviors"] = scenario_tag.lower()
if emotion_tag and emotion_tag != "None":
search_filter["emotion"] = emotion_tag.lower()
if search_filter:
docs = vs.similarity_search(query, k=5, filter=search_filter)
else:
docs = retriever.invoke(query)
context = _format_docs(docs)
first_emotion = None
for doc in docs:
if "emotion" in doc.metadata and doc.metadata["emotion"]:
emotion_data = doc.metadata["emotion"]
if isinstance(emotion_data, list):
first_emotion = emotion_data[0]
else:
first_emotion = emotion_data
break
emotions_context = render_emotion_guidelines(first_emotion)
is_tagged_scenario = (scenario_tag and scenario_tag != "None") or (emotion_tag and emotion_tag != "None") or (first_emotion is not None)
template = ANSWER_TEMPLATE_ADQ if is_tagged_scenario else ANSWER_TEMPLATE_CALM
user_prompt = template.format(
context=context,
question=query,
scenario_tag=scenario_tag,
emotions_context=emotions_context,
role=role,
language=language
)
system_message = SYSTEM_TEMPLATE.format(
tone=tone, language=language, patient_name=patient_name or "the patient",
caregiver_name=caregiver_name or "the caregiver", guardrails=SAFETY_GUARDRAILS,
)
messages = [{"role": "system", "content": system_message}]
messages.extend(chat_history)
messages.append({"role": "user", "content": user_prompt})
answer = call_llm(messages, temperature=temperature)
high_risk_scenarios = ["exit_seeking", "wandering", "elopement"]
if scenario_tag and scenario_tag.lower() in high_risk_scenarios:
answer += f"\n\n---\n{RISK_FOOTER}"
return {"answer": answer, "sources": _format_sources(docs)}
return _answer_fn
def answer_query(chain, question: str, **kwargs) -> Dict[str, Any]:
"""A clean wrapper to pass arguments from the UI to the RAG chain."""
if not callable(chain):
return {"answer": "[Error: RAG chain is not callable]", "sources": []}
chat_history = kwargs.get("chat_history", [])
scenario_tag = kwargs.get("scenario_tag")
emotion_tag = kwargs.get("emotion_tag")
try:
return chain(question, chat_history=chat_history, scenario_tag=scenario_tag, emotion_tag=emotion_tag)
except Exception as e:
print(f"ERROR in answer_query: {e}")
return {"answer": f"[Error executing chain: {e}]", "sources": []}
# -----------------------------
# TTS & Transcription
# -----------------------------
# (This entire section remains unchanged)
def synthesize_tts(text: str, lang: str = "en"):
"""Returns a path to a temporary audio file."""
if not text or gTTS is None: return None
try:
fd, path = tempfile.mkstemp(suffix=".mp3")
os.close(fd)
tts = gTTS(text=text, lang=(lang or "en"))
tts.save(path)
return path
except Exception:
return None
def transcribe_audio(filepath: str, lang: str = "en"):
"""Transcribes an audio file using OpenAI's Whisper API."""
client = _openai_client()
if not client:
return "[Transcription failed: API key not configured]"
api_args = {
"model": "whisper-1",
}
if lang and lang != "auto":
api_args["language"] = lang
with open(filepath, "rb") as audio_file:
transcription = client.audio.transcriptions.create(file=audio_file, **api_args)
return transcription.text
|