Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,61 +1,85 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces ## For ZeroGPU
|
| 3 |
import torch
|
| 4 |
-
import
|
| 5 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
| 6 |
|
|
|
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
-
|
| 9 |
model_name = "Hatman/audio-emotion-detection"
|
| 10 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
| 11 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
inputs = {k: v.to('cpu') for k, v in inputs.items()} # Not necessary on ZeroGPU
|
| 23 |
-
with torch.no_grad():
|
| 24 |
-
logits = model(**inputs).logits
|
| 25 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 26 |
-
return model.config.id2label[predicted_ids.item()], logits, predicted_ids
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
| 32 |
-
inputs = {k: v.to('cpu') for k, v in inputs.items()} # Not necessary on ZeroGPU
|
| 33 |
-
with torch.no_grad():
|
| 34 |
-
logits = model(**inputs).logits
|
| 35 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 36 |
-
return model.config.id2label[predicted_ids.item()]
|
| 37 |
-
|
| 38 |
-
with gr.Blocks() as demo:
|
| 39 |
-
gr.Markdown("# Audio Sentiment Analysis")
|
| 40 |
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
| 5 |
|
| 6 |
+
# Initialize model and processor
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 8 |
model_name = "Hatman/audio-emotion-detection"
|
| 9 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
| 10 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
| 11 |
+
model.to(device)
|
| 12 |
|
| 13 |
+
# Define emotion labels
|
| 14 |
+
EMOTION_LABELS = {
|
| 15 |
+
0: "angry",
|
| 16 |
+
1: "disgust",
|
| 17 |
+
2: "fear",
|
| 18 |
+
3: "happy",
|
| 19 |
+
4: "neutral",
|
| 20 |
+
5: "sad",
|
| 21 |
+
6: "surprise"
|
| 22 |
+
}
|
| 23 |
|
| 24 |
+
def process_audio(audio):
|
| 25 |
+
"""Process audio chunk and return emotion"""
|
| 26 |
+
if audio is None:
|
| 27 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
# Get the audio data
|
| 30 |
+
if isinstance(audio, tuple):
|
| 31 |
+
audio = audio[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
# Convert to numpy array if needed
|
| 34 |
+
audio = np.array(audio)
|
| 35 |
|
| 36 |
+
# Ensure we have mono audio
|
| 37 |
+
if len(audio.shape) > 1:
|
| 38 |
+
audio = audio.mean(axis=1)
|
| 39 |
|
| 40 |
+
try:
|
| 41 |
+
# Prepare input for the model
|
| 42 |
+
inputs = feature_extractor(
|
| 43 |
+
audio,
|
| 44 |
+
sampling_rate=16000,
|
| 45 |
+
return_tensors="pt",
|
| 46 |
+
padding=True
|
| 47 |
)
|
| 48 |
+
|
| 49 |
+
# Move to appropriate device
|
| 50 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 51 |
+
|
| 52 |
+
# Get prediction
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = model(**inputs)
|
| 55 |
+
logits = outputs.logits
|
| 56 |
+
predicted_id = torch.argmax(logits, dim=-1).item()
|
| 57 |
+
|
| 58 |
+
emotion = EMOTION_LABELS[predicted_id]
|
| 59 |
+
return emotion
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Error processing audio: {e}")
|
| 63 |
+
return "Error processing audio"
|
| 64 |
|
| 65 |
+
# Create Gradio interface
|
| 66 |
+
demo = gr.Interface(
|
| 67 |
+
fn=process_audio,
|
| 68 |
+
inputs=[
|
| 69 |
+
gr.Audio(
|
| 70 |
+
sources=["microphone"],
|
| 71 |
+
type="numpy",
|
| 72 |
+
streaming=True,
|
| 73 |
+
label="Speak into your microphone",
|
| 74 |
+
show_label=True
|
| 75 |
)
|
| 76 |
+
],
|
| 77 |
+
outputs=gr.Textbox(label="Detected Emotion"),
|
| 78 |
+
title="Live Emotion Detection",
|
| 79 |
+
description="Speak into your microphone to detect emotions in real-time.",
|
| 80 |
+
live=True,
|
| 81 |
+
allow_flagging=False
|
| 82 |
+
)
|
| 83 |
|
| 84 |
+
# Launch with a small queue for better real-time performance
|
| 85 |
+
demo.queue(max_size=1).launch(share=True)
|