Spaces:
Running
on
Zero
Running
on
Zero
hatmanstack
commited on
Commit
·
8581f9c
1
Parent(s):
938bf7e
Back to Zero
Browse files
app.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
import torch
|
| 4 |
import torchaudio
|
| 5 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
|
@@ -15,7 +15,7 @@ def preprocess_audio(audio):
|
|
| 15 |
resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
|
| 16 |
return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000}
|
| 17 |
|
| 18 |
-
|
| 19 |
def inference(audio):
|
| 20 |
example = preprocess_audio(audio)
|
| 21 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
|
@@ -25,7 +25,7 @@ def inference(audio):
|
|
| 25 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 26 |
return model.config.id2label[predicted_ids.item()], logits, predicted_ids
|
| 27 |
|
| 28 |
-
|
| 29 |
def inference_label(audio):
|
| 30 |
example = preprocess_audio(audio)
|
| 31 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces ## For ZeroGPU
|
| 3 |
import torch
|
| 4 |
import torchaudio
|
| 5 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
|
|
|
| 15 |
resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
|
| 16 |
return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000}
|
| 17 |
|
| 18 |
+
@spaces.GPU ## For ZeroGPU
|
| 19 |
def inference(audio):
|
| 20 |
example = preprocess_audio(audio)
|
| 21 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
|
|
|
| 25 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 26 |
return model.config.id2label[predicted_ids.item()], logits, predicted_ids
|
| 27 |
|
| 28 |
+
@spaces.GPU ## For ZeroGPU
|
| 29 |
def inference_label(audio):
|
| 30 |
example = preprocess_audio(audio)
|
| 31 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|