Abs6187's picture
Update app.py
f008eb0 verified
import pandas as pd
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
from sklearn.metrics import confusion_matrix, precision_score, recall_score
# Sample data preparation
data = {
'transaction_amount': [2500, 799, 9338, 11749, 8999, 1500, 3000, 4000, 300, 5000, 24990],
'transaction_date': ['01-11-2024 16:08', '01-11-2024 16:15', '02-11-2024 14:43', '03-11-2024 11:14',
'04-11-2024 12:54', '06-11-2024 08:36', '06-11-2024 08:56', '06-11-2024 09:08',
'06-11-2024 09:29', '06-11-2024 13:05', '06-11-2024 15:12'],
'transaction_channel': ['mobile', 'mobile', 'mobile', 'mobile', 'mobile', 'W', 'W', 'W', 'W', 'W', 'mobile'],
'is_fraud': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
'transaction_payment_mode_anonymous': [10, 10, 2, 6, 2, 10, 10, 10, 10, 10, 2],
'payment_gateway_bank_anonymous': [6, 6, 6, 58, 6, 6, 6, 6, 6, 6, 6],
'payer_browser_anonymous': [1833, 1833, 2766, 3378, 2766, 3212, 3212, 3212, 3212, 3212, 2721],
'transaction_id_anonymous': ['ANON_9629', 'ANON_9764', 'ANON_27514', 'ANON_41176', 'ANON_66597',
'ANON_134329', 'ANON_134618', 'ANON_134815', 'ANON_135218',
'ANON_147464', 'ANON_155578'],
'payee_id_anonymous': ['ANON_47', 'ANON_47', 'ANON_265', 'ANON_8', 'ANON_265', 'ANON_12',
'ANON_12', 'ANON_12', 'ANON_12', 'ANON_12', 'ANON_265']
}
df = pd.DataFrame(data)
df['transaction_date'] = pd.to_datetime(df['transaction_date'], format='%d-%m-%Y %H:%M')
np.random.seed(42)
df['is_fraud_predicted'] = np.random.choice([0, 1], size=len(df), p=[0.3, 0.7])
df['is_fraud_reported'] = np.random.choice([0, 1], size=len(df), p=[0.4, 0.6])
def filter_data(start_date, end_date, payer_id, payee_id, transaction_id):
filtered_df = df.copy()
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
filtered_df = filtered_df[(filtered_df['transaction_date'] >= start_date) &
(filtered_df['transaction_date'] <= end_date)]
if payer_id:
filtered_df = filtered_df[filtered_df['transaction_id_anonymous'] == payer_id]
if payee_id:
filtered_df = filtered_df[filtered_df['payee_id_anonymous'] == payee_id]
if transaction_id:
filtered_df = filtered_df[filtered_df['transaction_id_anonymous'] == transaction_id]
return filtered_df
def create_comparison_chart(dimension, filtered_df):
if filtered_df.empty:
return plt.figure()
plt.figure(figsize=(10, 6))
if dimension == 'Transaction Channel':
group_col = 'transaction_channel'
elif dimension == 'Transaction Payment Mode':
group_col = 'transaction_payment_mode_anonymous'
elif dimension == 'Payment Gateway Bank':
group_col = 'payment_gateway_bank_anonymous'
elif dimension == 'Payer ID':
group_col = 'transaction_id_anonymous'
elif dimension == 'Payee ID':
group_col = 'payee_id_anonymous'
else:
return plt.figure()
predicted = filtered_df.groupby(group_col)['is_fraud_predicted'].sum()
reported = filtered_df.groupby(group_col)['is_fraud_reported'].sum()
plot_df = pd.DataFrame({
'Predicted Fraud': predicted,
'Reported Fraud': reported
})
plot_df.plot(kind='bar', figsize=(10, 6))
plt.title(f'Fraud Comparison by {dimension}')
plt.ylabel('Count')
plt.xlabel(dimension)
plt.tight_layout()
return plt
def create_time_series(filtered_df, granularity):
if filtered_df.empty:
return plt.figure()
plt.figure(figsize=(12, 6))
if granularity == 'Day':
time_group = filtered_df['transaction_date'].dt.date
elif granularity == 'Hour':
time_group = filtered_df['transaction_date'].dt.strftime('%Y-%m-%d %H')
elif granularity == 'Minute':
time_group = filtered_df['transaction_date'].dt.strftime('%Y-%m-%d %H:%M')
else:
return plt.figure()
predicted = filtered_df.groupby(time_group)['is_fraud_predicted'].sum()
reported = filtered_df.groupby(time_group)['is_fraud_reported'].sum()
plt.plot(predicted.index, predicted.values, 'b-', label='Predicted Fraud')
plt.plot(reported.index, reported.values, 'r-', label='Reported Fraud')
plt.title('Fraud Trend Over Time')
plt.ylabel('Count')
plt.xlabel('Time')
plt.legend()
plt.xticks(rotation=45)
plt.tight_layout()
return plt
def calculate_metrics(filtered_df):
if filtered_df.empty:
return None, 0, 0
cm = confusion_matrix(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'])
precision = precision_score(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'], zero_division=0)
recall = recall_score(filtered_df['is_fraud'], filtered_df['is_fraud_predicted'], zero_division=0)
plt.figure(figsize=(6, 5))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=['Not Fraud', 'Fraud'],
yticklabels=['Not Fraud', 'Fraud'])
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.title('Confusion Matrix')
return plt, precision, recall
def update_interface(start_date, end_date, payer_id, payee_id, transaction_id, dimension, time_granularity):
filtered_df = filter_data(start_date, end_date, payer_id, payee_id, transaction_id)
comparison_chart = create_comparison_chart(dimension, filtered_df)
time_series = create_time_series(filtered_df, time_granularity)
confusion_matrix_plot, precision, recall = calculate_metrics(filtered_df)
display_df = filtered_df.copy()
display_df['transaction_date'] = display_df['transaction_date'].dt.strftime('%Y-%m-%d %H:%M')
return (display_df.to_dict('records'),
comparison_chart,
time_series,
confusion_matrix_plot,
f"Precision: {precision:.4f}",
f"Recall: {recall:.4f}")
with gr.Blocks() as demo:
gr.Markdown("# Fraud Transaction Analysis Dashboard")
with gr.Row():
with gr.Column():
start_date = gr.Textbox(label="Start Date (YYYY-MM-DD)", value="2024-11-01")
end_date = gr.Textbox(label="End Date (YYYY-MM-DD)", value="2024-11-06")
with gr.Column():
payer_id = gr.Textbox(label="Payer ID")
payee_id = gr.Textbox(label="Payee ID")
transaction_id = gr.Textbox(label="Transaction ID")
with gr.Row():
dimension = gr.Dropdown(
["Transaction Channel", "Transaction Payment Mode", "Payment Gateway Bank", "Payer ID", "Payee ID"],
label="Comparison Dimension",
value="Transaction Channel"
)
time_granularity = gr.Dropdown(
["Day", "Hour", "Minute"],
label="Time Granularity",
value="Day"
)
update_button = gr.Button("Update Dashboard")
with gr.Row():
gr.Markdown("## Transaction Data")
data_table = gr.DataFrame()
with gr.Row():
with gr.Column():
gr.Markdown("## Fraud Comparison by Dimension")
comparison_plot = gr.Plot()
with gr.Column():
gr.Markdown("## Fraud Trend Over Time")
time_series_plot = gr.Plot()
with gr.Row():
gr.Markdown("## Model Evaluation")
with gr.Row():
with gr.Column():
confusion_matrix_plot = gr.Plot()
with gr.Column():
precision_text = gr.Textbox(label="Precision")
recall_text = gr.Textbox(label="Recall")
update_button.click(
update_interface,
inputs=[start_date, end_date, payer_id, payee_id, transaction_id, dimension, time_granularity],
outputs=[data_table, comparison_plot, time_series_plot, confusion_matrix_plot, precision_text, recall_text]
)
if __name__ == "__main__":
demo.launch()