1inkusFace's picture
Update app.py
fe7a814 verified
raw
history blame
17.3 kB
import subprocess
subprocess.run(['sh', './spaces.sh'])
import os
# Environment variable setup
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
import spaces
import gradio as gr
import numpy as np
import random
import datetime
import threading
import io
# --- New GCS Imports ---
from google.oauth2 import service_account
from google.cloud import storage
import torch
@spaces.GPU(required=True)
def install_flashattn():
subprocess.run(['sh', './flashattn.sh'])
#install_flashattn()
# Torch performance settings
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from PIL import Image
from image_gen_aux import UpscaleWithModel
from diffusers.models.attention_processor import Attention
from kernels import get_kernel
vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")
class FlashAttentionProcessor(Attention):
def __init__(self):
super().__init__()
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, **kwargs):
query = attn.to_q(hidden_states)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
# Scale the queries
scale = attn.scale
query = query * scale
# Reshape to match kernel requirements
b, t, c = query.shape
h = attn.heads
q_reshaped = query.reshape(b, t, h, c // h)
k_reshaped = key.reshape(b, t, h, c // h)
v_reshaped = value.reshape(b, t, h, c // h)
out_reshaped = torch.empty_like(q_reshaped)
# Call the pre-compiled kernel
vllm_flash_attn3.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
# Reshape output back
out = out_reshaped.reshape(b, t, c)
out = attn.to_out[0](out)
out = attn.to_out[1](out)
return out
# --- GCS Configuration ---
# Make sure to set these secrets in your Hugging Face Space settings
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string
# Initialize GCS client if credentials are available
gcs_client = None
if GCS_SA_KEY and GCS_BUCKET_NAME:
try:
credentials_info = eval(GCS_SA_KEY) # Using eval is safe here if you trust the secret source
credentials = service_account.Credentials.from_service_account_info(credentials_info)
gcs_client = storage.Client(credentials=credentials)
print("✅ GCS Client initialized successfully.")
except Exception as e:
print(f"❌ Failed to initialize GCS client: {e}")
def upload_to_gcs(image_object, filename):
if not gcs_client:
print("⚠️ GCS client not initialized. Skipping upload.")
return
try:
print(f"--> Starting GCS upload for {filename}...")
bucket = gcs_client.bucket(GCS_BUCKET_NAME)
blob = bucket.blob(f"stablediff/{filename}")
img_byte_arr = io.BytesIO()
image_object.save(img_byte_arr, format='PNG', optimize=False, compress_level=0)
img_byte_arr = img_byte_arr.getvalue()
blob.upload_from_string(img_byte_arr, content_type='image/png')
print(f"✅ Successfully uploaded {filename} to GCS.")
except Exception as e:
print(f"❌ An error occurred during GCS upload: {e}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
@spaces.GPU(duration=120)
def compile_transformer():
with spaces.aoti_capture(pipe.transformer) as call:
pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.")
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
def load_model():
pipe = StableDiffusion3Pipeline.from_pretrained(
"ford442/stable-diffusion-3.5-large-bf16",
trust_remote_code=True,
transformer=None, # Load transformer separately
use_safetensors=True
)
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16)
pipe.transformer=ll_transformer
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
pipe.to(device=device, dtype=torch.bfloat16)
for name, module in pipe.unet.named_modules():
if isinstance(module, Attention):
module.processor = fa_processor
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
return pipe, upscaler_2
fa_processor = FlashAttentionProcessor()
pipe, upscaler_2 = load_model()
compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=45)
def generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
sd_image = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384
).images[0]
print('-- got image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
return sd_image, downscaled_upscale, prompt
@spaces.GPU(duration=70)
def generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
sd_image = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384
).images[0]
print('-- got image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
return sd_image, downscaled_upscale, prompt
@spaces.GPU(duration=120)
def generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
sd_image = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384
).images[0]
print('-- got image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
return sd_image, downscaled_upscale, prompt
def run_inference_and_upload_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
sd_image, upscaled_image, expanded_prompt = generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
if save_consent:
print("✅ User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_filename = f"sd35ll_{timestamp}.png"
upscale_filename = f"sd35ll_upscale_{timestamp}.png"
sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
sd_thread.start()
upscale_thread.start()
else:
print("ℹ️ User did not consent to save. Skipping upload.")
return sd_image, expanded_prompt
def run_inference_and_upload_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
sd_image, upscaled_image, expanded_prompt = generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
if save_consent:
print("✅ User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_filename = f"sd35ll_{timestamp}.png"
upscale_filename = f"sd35ll_upscale_{timestamp}.png"
sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
sd_thread.start()
upscale_thread.start()
else:
print("ℹ️ User did not consent to save. Skipping upload.")
return sd_image, expanded_prompt
def run_inference_and_upload_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
sd_image, upscaled_image, expanded_prompt = generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
if save_consent:
print("✅ User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_filename = f"sd35ll_{timestamp}.png"
upscale_filename = f"sd35ll_upscale_{timestamp}.png"
sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
sd_thread.start()
upscale_thread.start()
else:
print("ℹ️ User did not consent to save. Skipping upload.")
return sd_image, expanded_prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
with gr.Row():
prompt = gr.Text(
label="Prompt", show_label=False, max_lines=1,
placeholder="Enter your prompt", container=False,
)
run_button_30 = gr.Button("Run30", scale=0, variant="primary")
run_button_60 = gr.Button("Run60", scale=0, variant="primary")
run_button_110 = gr.Button("Run100", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False, type="pil")
save_consent_checkbox = gr.Checkbox(
label="✅ Anonymously upload result to a public gallery",
value=True, # Default to not uploading
info="Check this box to help us by contributing your image."
)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)
run_button_30.click(
fn=run_inference_and_upload_30,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
save_consent_checkbox # Pass the checkbox value
],
outputs=[result, expanded_prompt_output],
)
run_button_60.click(
fn=run_inference_and_upload_60,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
save_consent_checkbox # Pass the checkbox value
],
outputs=[result, expanded_prompt_output],
)
run_button_110.click(
fn=run_inference_and_upload_110,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
save_consent_checkbox # Pass the checkbox value
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch()