File size: 17,287 Bytes
ff7f5af
 
6f708fa
ff7f5af
 
 
 
 
 
 
6f708fa
ff7f5af
2662f4d
 
 
ff7f5af
 
 
2662f4d
ff7f5af
 
 
2662f4d
ff7f5af
2662f4d
ff7f5af
 
 
2662f4d
ff7f5af
2f6f1b4
ff7f5af
2662f4d
 
 
 
 
 
f977e03
 
e05222e
2f6f1b4
ff7f5af
 
 
22371d1
e95c348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff7f5af
 
 
 
2662f4d
ff7f5af
 
 
2662f4d
ff7f5af
 
 
 
2662f4d
ff7f5af
2662f4d
ff7f5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662f4d
f1a0bd5
d8ab2f5
e95c348
 
 
 
 
 
 
 
 
 
 
ff7f5af
 
 
 
 
 
 
 
 
 
 
e95c348
fe7a814
 
ff7f5af
 
e95c348
 
09f419b
ff7f5af
2662f4d
e95c348
 
 
2662f4d
 
 
ff7f5af
 
 
2662f4d
ff7f5af
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
 
 
 
2662f4d
 
ff7f5af
 
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
2662f4d
 
ff7f5af
2662f4d
ff7f5af
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
 
 
 
2662f4d
 
ff7f5af
 
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
2662f4d
ff7f5af
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
 
 
 
2662f4d
 
ff7f5af
 
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
2662f4d
ff7f5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662f4d
 
 
 
 
ff7f5af
2662f4d
ff7f5af
 
2662f4d
 
ff7f5af
 
2662f4d
ff7f5af
 
 
 
 
 
 
 
 
2662f4d
ff7f5af
 
 
2662f4d
ff7f5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662f4d
ff7f5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662f4d
ff7f5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2662f4d
ff7f5af
2662f4d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import subprocess
subprocess.run(['sh', './spaces.sh'])

import os
# Environment variable setup
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'

import spaces
import gradio as gr
import numpy as np
import random
import datetime
import threading
import io

# --- New GCS Imports ---
from google.oauth2 import service_account
from google.cloud import storage

import torch

@spaces.GPU(required=True)
def install_flashattn():
    subprocess.run(['sh', './flashattn.sh'])

#install_flashattn()

# Torch performance settings
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")

from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from PIL import Image
from image_gen_aux import UpscaleWithModel



from diffusers.models.attention_processor import Attention
from kernels import get_kernel
vllm_flash_attn3 = get_kernel("kernels-community/vllm-flash-attn3")

class FlashAttentionProcessor(Attention):
    def __init__(self):
        super().__init__()
    def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, **kwargs):
        query = attn.to_q(hidden_states)
        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)
        # Scale the queries
        scale = attn.scale
        query = query * scale
        # Reshape to match kernel requirements
        b, t, c = query.shape
        h = attn.heads
        q_reshaped = query.reshape(b, t, h, c // h)
        k_reshaped = key.reshape(b, t, h, c // h)
        v_reshaped = value.reshape(b, t, h, c // h)
        out_reshaped = torch.empty_like(q_reshaped)
        # Call the pre-compiled kernel
        vllm_flash_attn3.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
        # Reshape output back
        out = out_reshaped.reshape(b, t, c)
        out = attn.to_out[0](out)
        out = attn.to_out[1](out)
        return out

        

# --- GCS Configuration ---
# Make sure to set these secrets in your Hugging Face Space settings
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string

# Initialize GCS client if credentials are available
gcs_client = None
if GCS_SA_KEY and GCS_BUCKET_NAME:
    try:
        credentials_info = eval(GCS_SA_KEY) # Using eval is safe here if you trust the secret source
        credentials = service_account.Credentials.from_service_account_info(credentials_info)
        gcs_client = storage.Client(credentials=credentials)
        print("✅ GCS Client initialized successfully.")
    except Exception as e:
        print(f"❌ Failed to initialize GCS client: {e}")

def upload_to_gcs(image_object, filename):
    if not gcs_client:
        print("⚠️ GCS client not initialized. Skipping upload.")
        return
    try:
        print(f"--> Starting GCS upload for {filename}...")
        bucket = gcs_client.bucket(GCS_BUCKET_NAME)
        blob = bucket.blob(f"stablediff/{filename}")
        img_byte_arr = io.BytesIO()
        image_object.save(img_byte_arr, format='PNG', optimize=False, compress_level=0)
        img_byte_arr = img_byte_arr.getvalue()
        blob.upload_from_string(img_byte_arr, content_type='image/png')
        print(f"✅ Successfully uploaded {filename} to GCS.")
    except Exception as e:
        print(f"❌ An error occurred during GCS upload: {e}")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

@spaces.GPU(duration=120)
def compile_transformer():
    with spaces.aoti_capture(pipe.transformer) as call:
        pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.")
    exported = torch.export.export(
        pipe.transformer,
        args=call.args,
        kwargs=call.kwargs,
    )
    return spaces.aoti_compile(exported)
    
def load_model():
    pipe = StableDiffusion3Pipeline.from_pretrained(
        "ford442/stable-diffusion-3.5-large-bf16",
        trust_remote_code=True,
        transformer=None, # Load transformer separately
        use_safetensors=True
    )
    ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16)
    pipe.transformer=ll_transformer
    pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
    pipe.to(device=device, dtype=torch.bfloat16)
    for name, module in pipe.unet.named_modules():
        if isinstance(module, Attention):
            module.processor = fa_processor
    upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
    return pipe, upscaler_2
    
fa_processor = FlashAttentionProcessor()

pipe, upscaler_2 = load_model()

compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096


@spaces.GPU(duration=45)
def generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    print('-- generating image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    sd_image = pipe(
        prompt=prompt, prompt_2=prompt, prompt_3=prompt,
        negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
        guidance_scale=guidance, num_inference_steps=steps,
        width=width, height=height, generator=generator,
        max_sequence_length=384
    ).images[0]
    print('-- got image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    with torch.no_grad():
        upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
        upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
    return sd_image, downscaled_upscale, prompt

@spaces.GPU(duration=70)
def generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    print('-- generating image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    sd_image = pipe(
        prompt=prompt, prompt_2=prompt, prompt_3=prompt,
        negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
        guidance_scale=guidance, num_inference_steps=steps,
        width=width, height=height, generator=generator,
        max_sequence_length=384
    ).images[0]
    print('-- got image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    with torch.no_grad():
        upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
        upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
    return sd_image, downscaled_upscale, prompt

@spaces.GPU(duration=120)
def generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)
    print('-- generating image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    sd_image = pipe(
        prompt=prompt, prompt_2=prompt, prompt_3=prompt,
        negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
        guidance_scale=guidance, num_inference_steps=steps,
        width=width, height=height, generator=generator,
        max_sequence_length=384
    ).images[0]
    print('-- got image --')
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats()
    with torch.no_grad():
        upscale = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
        upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscaled_upscale = upscale2.resize((upscale2.width // 16, upscale2.height // 16), Image.LANCZOS)
    return sd_image, downscaled_upscale, prompt

def run_inference_and_upload_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
    sd_image, upscaled_image, expanded_prompt = generate_images_30(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
    if save_consent:
        print("✅ User consented to save. Preparing uploads...")
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        sd_filename = f"sd35ll_{timestamp}.png"
        upscale_filename = f"sd35ll_upscale_{timestamp}.png"
        sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
        upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
        sd_thread.start()
        upscale_thread.start()
    else:
        print("ℹ️ User did not consent to save. Skipping upload.")
    return sd_image, expanded_prompt

def run_inference_and_upload_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
    sd_image, upscaled_image, expanded_prompt = generate_images_60(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
    if save_consent:
        print("✅ User consented to save. Preparing uploads...")
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        sd_filename = f"sd35ll_{timestamp}.png"
        upscale_filename = f"sd35ll_upscale_{timestamp}.png"
        sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
        upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
        sd_thread.start()
        upscale_thread.start()
    else:
        print("ℹ️ User did not consent to save. Skipping upload.")
    return sd_image, expanded_prompt

def run_inference_and_upload_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
    sd_image, upscaled_image, expanded_prompt = generate_images_110(prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress)
    if save_consent:
        print("✅ User consented to save. Preparing uploads...")
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        sd_filename = f"sd35ll_{timestamp}.png"
        upscale_filename = f"sd35ll_upscale_{timestamp}.png"
        sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_image, sd_filename))
        upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_image, upscale_filename))
        sd_thread.start()
        upscale_thread.start()
    else:
        print("ℹ️ User did not consent to save. Skipping upload.")
    return sd_image, expanded_prompt
    
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
        expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
        with gr.Row():
            prompt = gr.Text(
                label="Prompt", show_label=False, max_lines=1,
                placeholder="Enter your prompt", container=False,
            )
            run_button_30 = gr.Button("Run30", scale=0, variant="primary")
            run_button_60 = gr.Button("Run60", scale=0, variant="primary")
            run_button_110 = gr.Button("Run100", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False, type="pil")
        save_consent_checkbox = gr.Checkbox(
            label="✅ Anonymously upload result to a public gallery",
            value=True, # Default to not uploading
            info="Check this box to help us by contributing your image."
        )
        with gr.Accordion("Advanced Settings", open=True):
            negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
            negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
            negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
            with gr.Row():
                width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
            with gr.Row():
                guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
                num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)

        run_button_30.click(
            fn=run_inference_and_upload_30,
            inputs=[
                prompt,
                negative_prompt_1,
                negative_prompt_2,
                negative_prompt_3,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                save_consent_checkbox # Pass the checkbox value
            ],
            outputs=[result, expanded_prompt_output],
        )

        run_button_60.click(
            fn=run_inference_and_upload_60,
            inputs=[
                prompt,
                negative_prompt_1,
                negative_prompt_2,
                negative_prompt_3,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                save_consent_checkbox # Pass the checkbox value
            ],
            outputs=[result, expanded_prompt_output],
        )

        run_button_110.click(
            fn=run_inference_and_upload_110,
            inputs=[
                prompt,
                negative_prompt_1,
                negative_prompt_2,
                negative_prompt_3,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                save_consent_checkbox # Pass the checkbox value
            ],
            outputs=[result, expanded_prompt_output],
        )
        

if __name__ == "__main__":
    demo.launch()