ynat-model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4040
- Accuracy: 0.8616
- Precision: 0.8525
- Recall: 0.8750
- F1: 0.8632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.3922 | 1.0 | 714 | 0.4190 | 0.8598 | 0.8472 | 0.8694 | 0.8574 |
| 0.2973 | 2.0 | 1428 | 0.4020 | 0.8538 | 0.8448 | 0.8725 | 0.8568 |
| 0.2244 | 3.0 | 2142 | 0.4040 | 0.8616 | 0.8525 | 0.8750 | 0.8632 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 18
Model tree for son1791/ynat-model
Base model
monologg/koelectra-base-v3-discriminator