|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from typing import Dict, Tuple, Optional, Union, Any |
|
|
from torch import nn |
|
|
from torch.nn import functional as F |
|
|
import torch |
|
|
import copy |
|
|
from omegaconf import DictConfig |
|
|
import threading |
|
|
import math |
|
|
from abc import ABC |
|
|
|
|
|
from diffusers.models.activations import get_activation |
|
|
from einops import pack, rearrange, repeat |
|
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
|
from diffusers.models.attention import ( |
|
|
GEGLU, |
|
|
GELU, |
|
|
AdaLayerNorm, |
|
|
AdaLayerNormZero, |
|
|
ApproximateGELU, |
|
|
) |
|
|
from diffusers.models.attention_processor import Attention |
|
|
from diffusers.models.lora import LoRACompatibleLinear |
|
|
|
|
|
from .configuration_flow import FlowConfig |
|
|
|
|
|
def subsequent_chunk_mask( |
|
|
size: int, |
|
|
chunk_size: int, |
|
|
num_left_chunks: int = -1, |
|
|
device: torch.device = torch.device("cpu"), |
|
|
) -> torch.Tensor: |
|
|
"""Create mask for subsequent steps (size, size) with chunk size, |
|
|
this is for streaming encoder |
|
|
|
|
|
Args: |
|
|
size (int): size of mask |
|
|
chunk_size (int): size of chunk |
|
|
num_left_chunks (int): number of left chunks |
|
|
<0: use full chunk |
|
|
>=0: use num_left_chunks |
|
|
device (torch.device): "cpu" or "cuda" or torch.Tensor.device |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: mask |
|
|
|
|
|
Examples: |
|
|
>>> subsequent_chunk_mask(4, 2) |
|
|
[[1, 1, 0, 0], |
|
|
[1, 1, 0, 0], |
|
|
[1, 1, 1, 1], |
|
|
[1, 1, 1, 1]] |
|
|
""" |
|
|
|
|
|
|
|
|
pos_idx = torch.arange(size, device=device) |
|
|
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size |
|
|
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1) |
|
|
return ret |
|
|
|
|
|
def add_optional_chunk_mask(xs: torch.Tensor, |
|
|
masks: torch.Tensor, |
|
|
use_dynamic_chunk: bool, |
|
|
use_dynamic_left_chunk: bool, |
|
|
decoding_chunk_size: int, |
|
|
static_chunk_size: int, |
|
|
num_decoding_left_chunks: int, |
|
|
enable_full_context: bool = True): |
|
|
""" Apply optional mask for encoder. |
|
|
|
|
|
Args: |
|
|
xs (torch.Tensor): padded input, (B, L, D), L for max length |
|
|
mask (torch.Tensor): mask for xs, (B, 1, L) |
|
|
use_dynamic_chunk (bool): whether to use dynamic chunk or not |
|
|
use_dynamic_left_chunk (bool): whether to use dynamic left chunk for |
|
|
training. |
|
|
decoding_chunk_size (int): decoding chunk size for dynamic chunk, it's |
|
|
0: default for training, use random dynamic chunk. |
|
|
<0: for decoding, use full chunk. |
|
|
>0: for decoding, use fixed chunk size as set. |
|
|
static_chunk_size (int): chunk size for static chunk training/decoding |
|
|
if it's greater than 0, if use_dynamic_chunk is true, |
|
|
this parameter will be ignored |
|
|
num_decoding_left_chunks: number of left chunks, this is for decoding, |
|
|
the chunk size is decoding_chunk_size. |
|
|
>=0: use num_decoding_left_chunks |
|
|
<0: use all left chunks |
|
|
enable_full_context (bool): |
|
|
True: chunk size is either [1, 25] or full context(max_len) |
|
|
False: chunk size ~ U[1, 25] |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: chunk mask of the input xs. |
|
|
""" |
|
|
|
|
|
if use_dynamic_chunk: |
|
|
max_len = xs.size(1) |
|
|
if decoding_chunk_size < 0: |
|
|
chunk_size = max_len |
|
|
num_left_chunks = -1 |
|
|
elif decoding_chunk_size > 0: |
|
|
chunk_size = decoding_chunk_size |
|
|
num_left_chunks = num_decoding_left_chunks |
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
chunk_size = torch.randint(1, max_len, (1, )).item() |
|
|
num_left_chunks = -1 |
|
|
if chunk_size > max_len // 2 and enable_full_context: |
|
|
chunk_size = max_len |
|
|
else: |
|
|
chunk_size = chunk_size % 25 + 1 |
|
|
if use_dynamic_left_chunk: |
|
|
max_left_chunks = (max_len - 1) // chunk_size |
|
|
num_left_chunks = torch.randint(0, max_left_chunks, |
|
|
(1, )).item() |
|
|
chunk_masks = subsequent_chunk_mask(xs.size(1), chunk_size, |
|
|
num_left_chunks, |
|
|
xs.device) |
|
|
chunk_masks = chunk_masks.unsqueeze(0) |
|
|
chunk_masks = masks & chunk_masks |
|
|
elif static_chunk_size > 0: |
|
|
num_left_chunks = num_decoding_left_chunks |
|
|
chunk_masks = subsequent_chunk_mask(xs.size(1), static_chunk_size, |
|
|
num_left_chunks, |
|
|
xs.device) |
|
|
chunk_masks = chunk_masks.unsqueeze(0) |
|
|
chunk_masks = masks & chunk_masks |
|
|
else: |
|
|
chunk_masks = masks |
|
|
return chunk_masks |
|
|
|
|
|
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: |
|
|
assert mask.dtype == torch.bool |
|
|
assert dtype in [torch.float32, torch.bfloat16, torch.float16] |
|
|
mask = mask.to(dtype) |
|
|
|
|
|
|
|
|
|
|
|
mask = (1.0 - mask) * torch.finfo(dtype).min |
|
|
return mask |
|
|
|
|
|
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: |
|
|
"""Make mask tensor containing indices of padded part. |
|
|
|
|
|
See description of make_non_pad_mask. |
|
|
|
|
|
Args: |
|
|
lengths (torch.Tensor): Batch of lengths (B,). |
|
|
Returns: |
|
|
torch.Tensor: Mask tensor containing indices of padded part. |
|
|
|
|
|
Examples: |
|
|
>>> lengths = [5, 3, 2] |
|
|
>>> make_pad_mask(lengths) |
|
|
masks = [[0, 0, 0, 0 ,0], |
|
|
[0, 0, 0, 1, 1], |
|
|
[0, 0, 1, 1, 1]] |
|
|
""" |
|
|
batch_size = lengths.size(0) |
|
|
max_len = max_len if max_len > 0 else lengths.max().item() |
|
|
seq_range = torch.arange(0, |
|
|
max_len, |
|
|
dtype=torch.int64, |
|
|
device=lengths.device) |
|
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) |
|
|
seq_length_expand = lengths.unsqueeze(-1) |
|
|
mask = seq_range_expand >= seq_length_expand |
|
|
return mask |
|
|
|
|
|
class Swish(torch.nn.Module): |
|
|
"""Construct an Swish object.""" |
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
|
"""Return Swish activation function.""" |
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class BASECFM(torch.nn.Module, ABC): |
|
|
def __init__( |
|
|
self, |
|
|
n_feats, |
|
|
cfm_params, |
|
|
n_spks=1, |
|
|
spk_emb_dim=128, |
|
|
): |
|
|
super().__init__() |
|
|
self.n_feats = n_feats |
|
|
self.n_spks = n_spks |
|
|
self.spk_emb_dim = spk_emb_dim |
|
|
self.solver = cfm_params.solver |
|
|
if hasattr(cfm_params, "sigma_min"): |
|
|
self.sigma_min = cfm_params.sigma_min |
|
|
else: |
|
|
self.sigma_min = 1e-4 |
|
|
|
|
|
self.estimator = None |
|
|
|
|
|
@torch.inference_mode() |
|
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): |
|
|
"""Forward diffusion |
|
|
|
|
|
Args: |
|
|
mu (torch.Tensor): output of encoder |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
mask (torch.Tensor): output_mask |
|
|
shape: (batch_size, 1, mel_timesteps) |
|
|
n_timesteps (int): number of diffusion steps |
|
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
|
shape: (batch_size, spk_emb_dim) |
|
|
cond: Not used but kept for future purposes |
|
|
|
|
|
Returns: |
|
|
sample: generated mel-spectrogram |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
""" |
|
|
z = torch.randn_like(mu) * temperature |
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) |
|
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond) |
|
|
|
|
|
def solve_euler(self, x, t_span, mu, mask, spks, cond): |
|
|
""" |
|
|
Fixed euler solver for ODEs. |
|
|
Args: |
|
|
x (torch.Tensor): random noise |
|
|
t_span (torch.Tensor): n_timesteps interpolated |
|
|
shape: (n_timesteps + 1,) |
|
|
mu (torch.Tensor): output of encoder |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
mask (torch.Tensor): output_mask |
|
|
shape: (batch_size, 1, mel_timesteps) |
|
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
|
shape: (batch_size, spk_emb_dim) |
|
|
cond: Not used but kept for future purposes |
|
|
""" |
|
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] |
|
|
|
|
|
|
|
|
|
|
|
sol = [] |
|
|
|
|
|
for step in range(1, len(t_span)): |
|
|
dphi_dt = self.estimator(x, mask, mu, t, spks, cond) |
|
|
|
|
|
x = x + dt * dphi_dt |
|
|
t = t + dt |
|
|
sol.append(x) |
|
|
if step < len(t_span) - 1: |
|
|
dt = t_span[step + 1] - t |
|
|
|
|
|
return sol[-1] |
|
|
|
|
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None): |
|
|
"""Computes diffusion loss |
|
|
|
|
|
Args: |
|
|
x1 (torch.Tensor): Target |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
mask (torch.Tensor): target mask |
|
|
shape: (batch_size, 1, mel_timesteps) |
|
|
mu (torch.Tensor): output of encoder |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None. |
|
|
shape: (batch_size, spk_emb_dim) |
|
|
|
|
|
Returns: |
|
|
loss: conditional flow matching loss |
|
|
y: conditional flow |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
""" |
|
|
b, _, t = mu.shape |
|
|
|
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) |
|
|
|
|
|
z = torch.randn_like(x1) |
|
|
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 |
|
|
u = x1 - (1 - self.sigma_min) * z |
|
|
|
|
|
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / ( |
|
|
torch.sum(mask) * u.shape[1] |
|
|
) |
|
|
return loss, y |
|
|
|
|
|
class Transpose(torch.nn.Module): |
|
|
def __init__(self, dim0: int, dim1: int): |
|
|
super().__init__() |
|
|
self.dim0 = dim0 |
|
|
self.dim1 = dim1 |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
|
x = torch.transpose(x, self.dim0, self.dim1) |
|
|
return x |
|
|
|
|
|
|
|
|
class Block1D(torch.nn.Module): |
|
|
def __init__(self, dim, dim_out, groups=8): |
|
|
super().__init__() |
|
|
self.block = torch.nn.Sequential( |
|
|
torch.nn.Conv1d(dim, dim_out, 3, padding=1), |
|
|
torch.nn.GroupNorm(groups, dim_out), |
|
|
nn.Mish(), |
|
|
) |
|
|
|
|
|
def forward(self, x, mask): |
|
|
output = self.block(x * mask) |
|
|
return output * mask |
|
|
|
|
|
class CausalBlock1D(Block1D): |
|
|
def __init__(self, dim: int, dim_out: int): |
|
|
super(CausalBlock1D, self).__init__(dim, dim_out) |
|
|
self.block = torch.nn.Sequential( |
|
|
CausalConv1d(dim, dim_out, 3), |
|
|
Transpose(1, 2), |
|
|
nn.LayerNorm(dim_out), |
|
|
Transpose(1, 2), |
|
|
nn.Mish(), |
|
|
) |
|
|
|
|
|
def forward(self, x: torch.Tensor, mask: torch.Tensor): |
|
|
output = self.block(x * mask) |
|
|
return output * mask |
|
|
|
|
|
class ResnetBlock1D(torch.nn.Module): |
|
|
def __init__(self, dim, dim_out, time_emb_dim, groups=8): |
|
|
super().__init__() |
|
|
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out)) |
|
|
|
|
|
self.block1 = Block1D(dim, dim_out, groups=groups) |
|
|
self.block2 = Block1D(dim_out, dim_out, groups=groups) |
|
|
|
|
|
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1) |
|
|
|
|
|
def forward(self, x, mask, time_emb): |
|
|
h = self.block1(x, mask) |
|
|
h += self.mlp(time_emb).unsqueeze(-1) |
|
|
h = self.block2(h, mask) |
|
|
output = h + self.res_conv(x * mask) |
|
|
return output |
|
|
|
|
|
|
|
|
class CausalResnetBlock1D(ResnetBlock1D): |
|
|
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8): |
|
|
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups) |
|
|
self.block1 = CausalBlock1D(dim, dim_out) |
|
|
self.block2 = CausalBlock1D(dim_out, dim_out) |
|
|
|
|
|
|
|
|
class CausalConv1d(torch.nn.Conv1d): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
out_channels: int, |
|
|
kernel_size: int, |
|
|
stride: int = 1, |
|
|
dilation: int = 1, |
|
|
groups: int = 1, |
|
|
bias: bool = True, |
|
|
padding_mode: str = 'zeros', |
|
|
device=None, |
|
|
dtype=None |
|
|
) -> None: |
|
|
super(CausalConv1d, self).__init__(in_channels, out_channels, |
|
|
kernel_size, stride, |
|
|
padding=0, dilation=dilation, |
|
|
groups=groups, bias=bias, |
|
|
padding_mode=padding_mode, |
|
|
device=device, dtype=dtype) |
|
|
assert stride == 1 |
|
|
self.causal_padding = (kernel_size - 1, 0) |
|
|
|
|
|
def forward(self, x: torch.Tensor): |
|
|
x = F.pad(x, self.causal_padding) |
|
|
x = super(CausalConv1d, self).forward(x) |
|
|
return x |
|
|
|
|
|
class ResnetBlock1D(torch.nn.Module): |
|
|
def __init__(self, dim, dim_out, time_emb_dim, groups=8): |
|
|
super().__init__() |
|
|
self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out)) |
|
|
|
|
|
self.block1 = Block1D(dim, dim_out, groups=groups) |
|
|
self.block2 = Block1D(dim_out, dim_out, groups=groups) |
|
|
|
|
|
self.res_conv = torch.nn.Conv1d(dim, dim_out, 1) |
|
|
|
|
|
def forward(self, x, mask, time_emb): |
|
|
h = self.block1(x, mask) |
|
|
h += self.mlp(time_emb).unsqueeze(-1) |
|
|
h = self.block2(h, mask) |
|
|
output = h + self.res_conv(x * mask) |
|
|
return output |
|
|
|
|
|
class SinusoidalPosEmb(torch.nn.Module): |
|
|
def __init__(self, dim): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even" |
|
|
|
|
|
def forward(self, x, scale=1000): |
|
|
if x.ndim < 1: |
|
|
x = x.unsqueeze(0) |
|
|
device = x.device |
|
|
half_dim = self.dim // 2 |
|
|
emb = math.log(10000) / (half_dim - 1) |
|
|
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) |
|
|
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) |
|
|
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) |
|
|
return emb |
|
|
|
|
|
class SnakeBeta(nn.Module): |
|
|
""" |
|
|
A modified Snake function which uses separate parameters for the magnitude of the periodic components |
|
|
Shape: |
|
|
- Input: (B, C, T) |
|
|
- Output: (B, C, T), same shape as the input |
|
|
Parameters: |
|
|
- alpha - trainable parameter that controls frequency |
|
|
- beta - trainable parameter that controls magnitude |
|
|
References: |
|
|
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: |
|
|
https://arxiv.org/abs/2006.08195 |
|
|
Examples: |
|
|
>>> a1 = snakebeta(256) |
|
|
>>> x = torch.randn(256) |
|
|
>>> x = a1(x) |
|
|
""" |
|
|
|
|
|
def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True): |
|
|
""" |
|
|
Initialization. |
|
|
INPUT: |
|
|
- in_features: shape of the input |
|
|
- alpha - trainable parameter that controls frequency |
|
|
- beta - trainable parameter that controls magnitude |
|
|
alpha is initialized to 1 by default, higher values = higher-frequency. |
|
|
beta is initialized to 1 by default, higher values = higher-magnitude. |
|
|
alpha will be trained along with the rest of your model. |
|
|
""" |
|
|
super().__init__() |
|
|
self.in_features = out_features if isinstance(out_features, list) else [out_features] |
|
|
self.proj = LoRACompatibleLinear(in_features, out_features) |
|
|
|
|
|
|
|
|
self.alpha_logscale = alpha_logscale |
|
|
if self.alpha_logscale: |
|
|
self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha) |
|
|
self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha) |
|
|
else: |
|
|
self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha) |
|
|
self.beta = nn.Parameter(torch.ones(self.in_features) * alpha) |
|
|
|
|
|
self.alpha.requires_grad = alpha_trainable |
|
|
self.beta.requires_grad = alpha_trainable |
|
|
|
|
|
self.no_div_by_zero = 0.000000001 |
|
|
|
|
|
def forward(self, x): |
|
|
""" |
|
|
Forward pass of the function. |
|
|
Applies the function to the input elementwise. |
|
|
SnakeBeta ∶= x + 1/b * sin^2 (xa) |
|
|
""" |
|
|
x = self.proj(x) |
|
|
if self.alpha_logscale: |
|
|
alpha = torch.exp(self.alpha) |
|
|
beta = torch.exp(self.beta) |
|
|
else: |
|
|
alpha = self.alpha |
|
|
beta = self.beta |
|
|
|
|
|
x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2) |
|
|
|
|
|
return x |
|
|
|
|
|
class FeedForward(nn.Module): |
|
|
r""" |
|
|
A feed-forward layer. |
|
|
|
|
|
Parameters: |
|
|
dim (`int`): The number of channels in the input. |
|
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
dim_out: Optional[int] = None, |
|
|
mult: int = 4, |
|
|
dropout: float = 0.0, |
|
|
activation_fn: str = "geglu", |
|
|
final_dropout: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
inner_dim = int(dim * mult) |
|
|
dim_out = dim_out if dim_out is not None else dim |
|
|
|
|
|
if activation_fn == "gelu": |
|
|
act_fn = GELU(dim, inner_dim) |
|
|
if activation_fn == "gelu-approximate": |
|
|
act_fn = GELU(dim, inner_dim, approximate="tanh") |
|
|
elif activation_fn == "geglu": |
|
|
act_fn = GEGLU(dim, inner_dim) |
|
|
elif activation_fn == "geglu-approximate": |
|
|
act_fn = ApproximateGELU(dim, inner_dim) |
|
|
elif activation_fn == "snakebeta": |
|
|
act_fn = SnakeBeta(dim, inner_dim) |
|
|
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
|
|
self.net.append(act_fn) |
|
|
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
|
|
self.net.append(LoRACompatibleLinear(inner_dim, dim_out)) |
|
|
|
|
|
if final_dropout: |
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
for module in self.net: |
|
|
hidden_states = module(hidden_states) |
|
|
return hidden_states |
|
|
|
|
|
@maybe_allow_in_graph |
|
|
class BasicTransformerBlock(nn.Module): |
|
|
r""" |
|
|
A basic Transformer block. |
|
|
|
|
|
Parameters: |
|
|
dim (`int`): The number of channels in the input and output. |
|
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
|
attention_head_dim (`int`): The number of channels in each head. |
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
|
only_cross_attention (`bool`, *optional*): |
|
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
|
double_self_attention (`bool`, *optional*): |
|
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
|
num_embeds_ada_norm (: |
|
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
|
attention_bias (: |
|
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
dim: int, |
|
|
num_attention_heads: int, |
|
|
attention_head_dim: int, |
|
|
dropout=0.0, |
|
|
cross_attention_dim: Optional[int] = None, |
|
|
activation_fn: str = "geglu", |
|
|
num_embeds_ada_norm: Optional[int] = None, |
|
|
attention_bias: bool = False, |
|
|
only_cross_attention: bool = False, |
|
|
double_self_attention: bool = False, |
|
|
upcast_attention: bool = False, |
|
|
norm_elementwise_affine: bool = True, |
|
|
norm_type: str = "layer_norm", |
|
|
final_dropout: bool = False, |
|
|
): |
|
|
super().__init__() |
|
|
self.only_cross_attention = only_cross_attention |
|
|
|
|
|
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" |
|
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" |
|
|
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
|
raise ValueError( |
|
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
|
elif self.use_ada_layer_norm_zero: |
|
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
|
else: |
|
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
self.attn1 = Attention( |
|
|
query_dim=dim, |
|
|
heads=num_attention_heads, |
|
|
dim_head=attention_head_dim, |
|
|
dropout=dropout, |
|
|
bias=attention_bias, |
|
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
|
upcast_attention=upcast_attention, |
|
|
) |
|
|
|
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
|
|
|
|
self.norm2 = ( |
|
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
|
if self.use_ada_layer_norm |
|
|
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
) |
|
|
self.attn2 = Attention( |
|
|
query_dim=dim, |
|
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
|
heads=num_attention_heads, |
|
|
dim_head=attention_head_dim, |
|
|
dropout=dropout, |
|
|
bias=attention_bias, |
|
|
upcast_attention=upcast_attention, |
|
|
|
|
|
) |
|
|
else: |
|
|
self.norm2 = None |
|
|
self.attn2 = None |
|
|
|
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) |
|
|
|
|
|
|
|
|
self._chunk_size = None |
|
|
self._chunk_dim = 0 |
|
|
|
|
|
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): |
|
|
|
|
|
self._chunk_size = chunk_size |
|
|
self._chunk_dim = dim |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.FloatTensor, |
|
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
|
timestep: Optional[torch.LongTensor] = None, |
|
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
|
class_labels: Optional[torch.LongTensor] = None, |
|
|
): |
|
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
|
elif self.use_ada_layer_norm_zero: |
|
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
|
) |
|
|
else: |
|
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
|
|
|
|
attn_output = self.attn1( |
|
|
norm_hidden_states, |
|
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
|
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask, |
|
|
**cross_attention_kwargs, |
|
|
) |
|
|
if self.use_ada_layer_norm_zero: |
|
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
|
|
|
if self.attn2 is not None: |
|
|
norm_hidden_states = ( |
|
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
|
) |
|
|
|
|
|
attn_output = self.attn2( |
|
|
norm_hidden_states, |
|
|
encoder_hidden_states=encoder_hidden_states, |
|
|
attention_mask=encoder_attention_mask, |
|
|
**cross_attention_kwargs, |
|
|
) |
|
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
|
|
if self.use_ada_layer_norm_zero: |
|
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
|
|
if self._chunk_size is not None: |
|
|
|
|
|
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: |
|
|
raise ValueError( |
|
|
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." |
|
|
) |
|
|
|
|
|
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size |
|
|
ff_output = torch.cat( |
|
|
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)], |
|
|
dim=self._chunk_dim, |
|
|
) |
|
|
else: |
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
|
|
if self.use_ada_layer_norm_zero: |
|
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
|
|
return hidden_states |
|
|
|
|
|
class Downsample1D(nn.Module): |
|
|
def __init__(self, dim): |
|
|
super().__init__() |
|
|
self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.conv(x) |
|
|
|
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels: int, |
|
|
time_embed_dim: int, |
|
|
act_fn: str = "silu", |
|
|
out_dim: int = None, |
|
|
post_act_fn: Optional[str] = None, |
|
|
cond_proj_dim=None, |
|
|
): |
|
|
super().__init__() |
|
|
|
|
|
self.linear_1 = nn.Linear(in_channels, time_embed_dim) |
|
|
|
|
|
if cond_proj_dim is not None: |
|
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) |
|
|
else: |
|
|
self.cond_proj = None |
|
|
|
|
|
self.act = get_activation(act_fn) |
|
|
|
|
|
if out_dim is not None: |
|
|
time_embed_dim_out = out_dim |
|
|
else: |
|
|
time_embed_dim_out = time_embed_dim |
|
|
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out) |
|
|
|
|
|
if post_act_fn is None: |
|
|
self.post_act = None |
|
|
else: |
|
|
self.post_act = get_activation(post_act_fn) |
|
|
|
|
|
def forward(self, sample, condition=None): |
|
|
if condition is not None: |
|
|
sample = sample + self.cond_proj(condition) |
|
|
sample = self.linear_1(sample) |
|
|
|
|
|
if self.act is not None: |
|
|
sample = self.act(sample) |
|
|
|
|
|
sample = self.linear_2(sample) |
|
|
|
|
|
if self.post_act is not None: |
|
|
sample = self.post_act(sample) |
|
|
return sample |
|
|
|
|
|
class ConditionalDecoder(nn.Module): |
|
|
def __init__( |
|
|
self, |
|
|
in_channels, |
|
|
out_channels, |
|
|
causal=False, |
|
|
channels=(256, 256), |
|
|
dropout=0.05, |
|
|
attention_head_dim=64, |
|
|
n_blocks=1, |
|
|
num_mid_blocks=2, |
|
|
num_heads=4, |
|
|
act_fn="snake", |
|
|
): |
|
|
""" |
|
|
This decoder requires an input with the same shape of the target. So, if your text content |
|
|
is shorter or longer than the outputs, please re-sampling it before feeding to the decoder. |
|
|
""" |
|
|
super().__init__() |
|
|
channels = tuple(channels) |
|
|
self.in_channels = in_channels |
|
|
self.out_channels = out_channels |
|
|
self.causal = causal |
|
|
self.time_embeddings = SinusoidalPosEmb(in_channels) |
|
|
time_embed_dim = channels[0] * 4 |
|
|
self.time_mlp = TimestepEmbedding( |
|
|
in_channels=in_channels, |
|
|
time_embed_dim=time_embed_dim, |
|
|
act_fn="silu", |
|
|
) |
|
|
self.down_blocks = nn.ModuleList([]) |
|
|
self.mid_blocks = nn.ModuleList([]) |
|
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = in_channels |
|
|
for i in range(len(channels)): |
|
|
input_channel = output_channel |
|
|
output_channel = channels[i] |
|
|
is_last = i == len(channels) - 1 |
|
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \ |
|
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
|
transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
BasicTransformerBlock( |
|
|
dim=output_channel, |
|
|
num_attention_heads=num_heads, |
|
|
attention_head_dim=attention_head_dim, |
|
|
dropout=dropout, |
|
|
activation_fn=act_fn, |
|
|
) |
|
|
for _ in range(n_blocks) |
|
|
] |
|
|
) |
|
|
downsample = ( |
|
|
Downsample1D(output_channel) if not is_last else |
|
|
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
|
) |
|
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample])) |
|
|
|
|
|
for _ in range(num_mid_blocks): |
|
|
input_channel = channels[-1] |
|
|
out_channels = channels[-1] |
|
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \ |
|
|
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) |
|
|
|
|
|
transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
BasicTransformerBlock( |
|
|
dim=output_channel, |
|
|
num_attention_heads=num_heads, |
|
|
attention_head_dim=attention_head_dim, |
|
|
dropout=dropout, |
|
|
activation_fn=act_fn, |
|
|
) |
|
|
for _ in range(n_blocks) |
|
|
] |
|
|
) |
|
|
|
|
|
self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks])) |
|
|
|
|
|
channels = channels[::-1] + (channels[0],) |
|
|
for i in range(len(channels) - 1): |
|
|
input_channel = channels[i] * 2 |
|
|
output_channel = channels[i + 1] |
|
|
is_last = i == len(channels) - 2 |
|
|
resnet = CausalResnetBlock1D( |
|
|
dim=input_channel, |
|
|
dim_out=output_channel, |
|
|
time_emb_dim=time_embed_dim, |
|
|
) if self.causal else ResnetBlock1D( |
|
|
dim=input_channel, |
|
|
dim_out=output_channel, |
|
|
time_emb_dim=time_embed_dim, |
|
|
) |
|
|
transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
BasicTransformerBlock( |
|
|
dim=output_channel, |
|
|
num_attention_heads=num_heads, |
|
|
attention_head_dim=attention_head_dim, |
|
|
dropout=dropout, |
|
|
activation_fn=act_fn, |
|
|
) |
|
|
for _ in range(n_blocks) |
|
|
] |
|
|
) |
|
|
upsample = ( |
|
|
Upsample1D(output_channel, use_conv_transpose=True) |
|
|
if not is_last |
|
|
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1) |
|
|
) |
|
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample])) |
|
|
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1]) |
|
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1) |
|
|
self.initialize_weights() |
|
|
|
|
|
def initialize_weights(self): |
|
|
for m in self.modules(): |
|
|
if isinstance(m, nn.Conv1d): |
|
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
|
if m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.GroupNorm): |
|
|
nn.init.constant_(m.weight, 1) |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.Linear): |
|
|
nn.init.kaiming_normal_(m.weight, nonlinearity="relu") |
|
|
if m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
def forward(self, x, mask, mu, t, spks=None, cond=None): |
|
|
"""Forward pass of the UNet1DConditional model. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): shape (batch_size, in_channels, time) |
|
|
mask (_type_): shape (batch_size, 1, time) |
|
|
t (_type_): shape (batch_size) |
|
|
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None. |
|
|
cond (_type_, optional): placeholder for future use. Defaults to None. |
|
|
|
|
|
Raises: |
|
|
ValueError: _description_ |
|
|
ValueError: _description_ |
|
|
|
|
|
Returns: |
|
|
_type_: _description_ |
|
|
""" |
|
|
|
|
|
t = self.time_embeddings(t).to(t.dtype) |
|
|
t = self.time_mlp(t) |
|
|
|
|
|
x = pack([x, mu], "b * t")[0] |
|
|
|
|
|
if spks is not None: |
|
|
spks = repeat(spks, "b c -> b c t", t=x.shape[-1]) |
|
|
x = pack([x, spks], "b * t")[0] |
|
|
if cond is not None: |
|
|
x = pack([x, cond], "b * t")[0] |
|
|
|
|
|
hiddens = [] |
|
|
masks = [mask] |
|
|
for resnet, transformer_blocks, downsample in self.down_blocks: |
|
|
mask_down = masks[-1] |
|
|
x = resnet(x, mask_down, t) |
|
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1) |
|
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
|
for transformer_block in transformer_blocks: |
|
|
x = transformer_block( |
|
|
hidden_states=x, |
|
|
attention_mask=attn_mask, |
|
|
timestep=t, |
|
|
) |
|
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
|
hiddens.append(x) |
|
|
x = downsample(x * mask_down) |
|
|
masks.append(mask_down[:, :, ::2]) |
|
|
masks = masks[:-1] |
|
|
mask_mid = masks[-1] |
|
|
|
|
|
for resnet, transformer_blocks in self.mid_blocks: |
|
|
x = resnet(x, mask_mid, t) |
|
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1) |
|
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
|
for transformer_block in transformer_blocks: |
|
|
x = transformer_block( |
|
|
hidden_states=x, |
|
|
attention_mask=attn_mask, |
|
|
timestep=t, |
|
|
) |
|
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
|
|
|
|
for resnet, transformer_blocks, upsample in self.up_blocks: |
|
|
mask_up = masks.pop() |
|
|
skip = hiddens.pop() |
|
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0] |
|
|
x = resnet(x, mask_up, t) |
|
|
x = rearrange(x, "b c t -> b t c").contiguous() |
|
|
|
|
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1) |
|
|
attn_mask = mask_to_bias(attn_mask == 1, x.dtype) |
|
|
for transformer_block in transformer_blocks: |
|
|
x = transformer_block( |
|
|
hidden_states=x, |
|
|
attention_mask=attn_mask, |
|
|
timestep=t, |
|
|
) |
|
|
x = rearrange(x, "b t c -> b c t").contiguous() |
|
|
x = upsample(x * mask_up) |
|
|
x = self.final_block(x, mask_up) |
|
|
output = self.final_proj(x * mask_up) |
|
|
return output * mask |
|
|
|
|
|
class ConditionalCFM(BASECFM): |
|
|
def __init__(self, in_channels=240, cfm_params=None, n_spks=1, spk_emb_dim=64, estimator_config= None): |
|
|
super().__init__( |
|
|
n_feats=in_channels, |
|
|
cfm_params=cfm_params, |
|
|
n_spks=n_spks, |
|
|
spk_emb_dim=spk_emb_dim, |
|
|
) |
|
|
self.t_scheduler = cfm_params.t_scheduler |
|
|
self.training_cfg_rate = cfm_params.training_cfg_rate |
|
|
self.inference_cfg_rate = cfm_params.inference_cfg_rate |
|
|
in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) |
|
|
|
|
|
self.estimator = ConditionalDecoder(**estimator_config) |
|
|
self.lock = threading.Lock() |
|
|
|
|
|
@torch.inference_mode() |
|
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)): |
|
|
"""Forward diffusion |
|
|
|
|
|
Args: |
|
|
mu (torch.Tensor): output of encoder |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
mask (torch.Tensor): output_mask |
|
|
shape: (batch_size, 1, mel_timesteps) |
|
|
n_timesteps (int): number of diffusion steps |
|
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
|
shape: (batch_size, spk_emb_dim) |
|
|
cond: Not used but kept for future purposes |
|
|
|
|
|
Returns: |
|
|
sample: generated mel-spectrogram |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
""" |
|
|
|
|
|
z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature |
|
|
cache_size = flow_cache.shape[2] |
|
|
|
|
|
if cache_size != 0: |
|
|
z[:, :, :cache_size] = flow_cache[:, :, :, 0] |
|
|
mu[:, :, :cache_size] = flow_cache[:, :, :, 1] |
|
|
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2) |
|
|
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2) |
|
|
flow_cache = torch.stack([z_cache, mu_cache], dim=-1) |
|
|
|
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) |
|
|
if self.t_scheduler == 'cosine': |
|
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) |
|
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache |
|
|
|
|
|
def solve_euler(self, x, t_span, mu, mask, spks, cond): |
|
|
""" |
|
|
Fixed euler solver for ODEs. |
|
|
Args: |
|
|
x (torch.Tensor): random noise |
|
|
t_span (torch.Tensor): n_timesteps interpolated |
|
|
shape: (n_timesteps + 1,) |
|
|
mu (torch.Tensor): output of encoder |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
mask (torch.Tensor): output_mask |
|
|
shape: (batch_size, 1, mel_timesteps) |
|
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
|
shape: (batch_size, spk_emb_dim) |
|
|
cond: Not used but kept for future purposes |
|
|
""" |
|
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] |
|
|
t = t.unsqueeze(dim=0) |
|
|
|
|
|
|
|
|
|
|
|
sol = [] |
|
|
|
|
|
|
|
|
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) |
|
|
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype) |
|
|
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) |
|
|
t_in = torch.zeros([2], device=x.device, dtype=x.dtype) |
|
|
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype) |
|
|
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype) |
|
|
for step in range(1, len(t_span)): |
|
|
|
|
|
x_in[:] = x |
|
|
mask_in[:] = mask |
|
|
mu_in[0] = mu |
|
|
t_in[:] = t.unsqueeze(0) |
|
|
spks_in[0] = spks |
|
|
cond_in[0] = cond |
|
|
dphi_dt = self.forward_estimator( |
|
|
x_in, mask_in, |
|
|
mu_in, t_in, |
|
|
spks_in, |
|
|
cond_in |
|
|
) |
|
|
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0) |
|
|
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) |
|
|
x = x + dt * dphi_dt |
|
|
t = t + dt |
|
|
sol.append(x) |
|
|
if step < len(t_span) - 1: |
|
|
dt = t_span[step + 1] - t |
|
|
|
|
|
return sol[-1].float() |
|
|
|
|
|
def forward_estimator(self, x, mask, mu, t, spks, cond): |
|
|
if isinstance(self.estimator, torch.nn.Module): |
|
|
return self.estimator.forward(x, mask, mu, t, spks, cond) |
|
|
else: |
|
|
with self.lock: |
|
|
self.estimator.set_input_shape('x', (2, 80, x.size(2))) |
|
|
self.estimator.set_input_shape('mask', (2, 1, x.size(2))) |
|
|
self.estimator.set_input_shape('mu', (2, 80, x.size(2))) |
|
|
self.estimator.set_input_shape('t', (2,)) |
|
|
self.estimator.set_input_shape('spks', (2, 80)) |
|
|
self.estimator.set_input_shape('cond', (2, 80, x.size(2))) |
|
|
|
|
|
self.estimator.execute_v2([x.contiguous().data_ptr(), |
|
|
mask.contiguous().data_ptr(), |
|
|
mu.contiguous().data_ptr(), |
|
|
t.contiguous().data_ptr(), |
|
|
spks.contiguous().data_ptr(), |
|
|
cond.contiguous().data_ptr(), |
|
|
x.data_ptr()]) |
|
|
return x |
|
|
|
|
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None): |
|
|
"""Computes diffusion loss |
|
|
|
|
|
Args: |
|
|
x1 (torch.Tensor): Target |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
mask (torch.Tensor): target mask |
|
|
shape: (batch_size, 1, mel_timesteps) |
|
|
mu (torch.Tensor): output of encoder |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None. |
|
|
shape: (batch_size, spk_emb_dim) |
|
|
|
|
|
Returns: |
|
|
loss: conditional flow matching loss |
|
|
y: conditional flow |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
""" |
|
|
b, _, t = mu.shape |
|
|
|
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) |
|
|
if self.t_scheduler == 'cosine': |
|
|
t = 1 - torch.cos(t * 0.5 * torch.pi) |
|
|
|
|
|
z = torch.randn_like(x1) |
|
|
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 |
|
|
u = x1 - (1 - self.sigma_min) * z |
|
|
|
|
|
|
|
|
if self.training_cfg_rate > 0: |
|
|
cfg_mask = torch.rand(b, device=x1.device) > self.training_cfg_rate |
|
|
mu = mu * cfg_mask.view(-1, 1, 1) |
|
|
spks = spks * cfg_mask.view(-1, 1) |
|
|
cond = cond * cfg_mask.view(-1, 1, 1) |
|
|
|
|
|
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond) |
|
|
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1]) |
|
|
return loss, y |
|
|
|
|
|
|
|
|
class CausalConditionalCFM(ConditionalCFM): |
|
|
def __init__(self, in_channels=240, cfm_params=None, n_spks=1, spk_emb_dim=64, estimator_config = None): |
|
|
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator_config) |
|
|
self.rand_noise = torch.randn([1, 80, 50 * 300]) |
|
|
|
|
|
@torch.inference_mode() |
|
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): |
|
|
"""Forward diffusion |
|
|
|
|
|
Args: |
|
|
mu (torch.Tensor): output of encoder |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
mask (torch.Tensor): output_mask |
|
|
shape: (batch_size, 1, mel_timesteps) |
|
|
n_timesteps (int): number of diffusion steps |
|
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
|
shape: (batch_size, spk_emb_dim) |
|
|
cond: Not used but kept for future purposes |
|
|
|
|
|
Returns: |
|
|
sample: generated mel-spectrogram |
|
|
shape: (batch_size, n_feats, mel_timesteps) |
|
|
""" |
|
|
|
|
|
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature |
|
|
|
|
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) |
|
|
if self.t_scheduler == 'cosine': |
|
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) |
|
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None |
|
|
|
|
|
class PositionwiseFeedForward(torch.nn.Module): |
|
|
"""Positionwise feed forward layer. |
|
|
|
|
|
FeedForward are appied on each position of the sequence. |
|
|
The output dim is same with the input dim. |
|
|
|
|
|
Args: |
|
|
idim (int): Input dimenstion. |
|
|
hidden_units (int): The number of hidden units. |
|
|
dropout_rate (float): Dropout rate. |
|
|
activation (torch.nn.Module): Activation function |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
idim: int, |
|
|
hidden_units: int, |
|
|
dropout_rate: float, |
|
|
activation: torch.nn.Module = torch.nn.ReLU(), |
|
|
): |
|
|
"""Construct a PositionwiseFeedForward object.""" |
|
|
super(PositionwiseFeedForward, self).__init__() |
|
|
self.w_1 = torch.nn.Linear(idim, hidden_units) |
|
|
self.activation = activation |
|
|
self.dropout = torch.nn.Dropout(dropout_rate) |
|
|
self.w_2 = torch.nn.Linear(hidden_units, idim) |
|
|
|
|
|
def forward(self, xs: torch.Tensor) -> torch.Tensor: |
|
|
"""Forward function. |
|
|
|
|
|
Args: |
|
|
xs: input tensor (B, L, D) |
|
|
Returns: |
|
|
output tensor, (B, L, D) |
|
|
""" |
|
|
return self.w_2(self.dropout(self.activation(self.w_1(xs)))) |
|
|
|
|
|
class ConformerEncoderLayer(nn.Module): |
|
|
"""Encoder layer module. |
|
|
Args: |
|
|
size (int): Input dimension. |
|
|
self_attn (torch.nn.Module): Self-attention module instance. |
|
|
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` |
|
|
instance can be used as the argument. |
|
|
feed_forward (torch.nn.Module): Feed-forward module instance. |
|
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
|
feed_forward_macaron (torch.nn.Module): Additional feed-forward module |
|
|
instance. |
|
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
|
conv_module (torch.nn.Module): Convolution module instance. |
|
|
`ConvlutionModule` instance can be used as the argument. |
|
|
dropout_rate (float): Dropout rate. |
|
|
normalize_before (bool): |
|
|
True: use layer_norm before each sub-block. |
|
|
False: use layer_norm after each sub-block. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
size: int, |
|
|
self_attn: torch.nn.Module, |
|
|
feed_forward: Optional[nn.Module] = None, |
|
|
feed_forward_macaron: Optional[nn.Module] = None, |
|
|
conv_module: Optional[nn.Module] = None, |
|
|
dropout_rate: float = 0.1, |
|
|
normalize_before: bool = True, |
|
|
): |
|
|
"""Construct an EncoderLayer object.""" |
|
|
super().__init__() |
|
|
self.self_attn = self_attn |
|
|
self.feed_forward = feed_forward |
|
|
self.feed_forward_macaron = feed_forward_macaron |
|
|
self.conv_module = conv_module |
|
|
self.norm_ff = nn.LayerNorm(size, eps=1e-12) |
|
|
self.norm_mha = nn.LayerNorm(size, eps=1e-12) |
|
|
if feed_forward_macaron is not None: |
|
|
self.norm_ff_macaron = nn.LayerNorm(size, eps=1e-12) |
|
|
self.ff_scale = 0.5 |
|
|
else: |
|
|
self.ff_scale = 1.0 |
|
|
if self.conv_module is not None: |
|
|
self.norm_conv = nn.LayerNorm(size, eps=1e-12) |
|
|
self.norm_final = nn.LayerNorm( |
|
|
size, eps=1e-12) |
|
|
self.dropout = nn.Dropout(dropout_rate) |
|
|
self.size = size |
|
|
self.normalize_before = normalize_before |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
mask: torch.Tensor, |
|
|
pos_emb: torch.Tensor, |
|
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
|
att_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
|
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
"""Compute encoded features. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): (#batch, time, size) |
|
|
mask (torch.Tensor): Mask tensor for the input (#batch, time,time), |
|
|
(0, 0, 0) means fake mask. |
|
|
pos_emb (torch.Tensor): positional encoding, must not be None |
|
|
for ConformerEncoderLayer. |
|
|
mask_pad (torch.Tensor): batch padding mask used for conv module. |
|
|
(#batch, 1,time), (0, 0, 0) means fake mask. |
|
|
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE |
|
|
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. |
|
|
cnn_cache (torch.Tensor): Convolution cache in conformer layer |
|
|
(#batch=1, size, cache_t2) |
|
|
Returns: |
|
|
torch.Tensor: Output tensor (#batch, time, size). |
|
|
torch.Tensor: Mask tensor (#batch, time, time). |
|
|
torch.Tensor: att_cache tensor, |
|
|
(#batch=1, head, cache_t1 + time, d_k * 2). |
|
|
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). |
|
|
""" |
|
|
|
|
|
|
|
|
if self.feed_forward_macaron is not None: |
|
|
residual = x |
|
|
if self.normalize_before: |
|
|
x = self.norm_ff_macaron(x) |
|
|
x = residual + self.ff_scale * self.dropout( |
|
|
self.feed_forward_macaron(x)) |
|
|
if not self.normalize_before: |
|
|
x = self.norm_ff_macaron(x) |
|
|
|
|
|
|
|
|
residual = x |
|
|
if self.normalize_before: |
|
|
x = self.norm_mha(x) |
|
|
x_att, new_att_cache = self.self_attn(x, x, x, mask, pos_emb, |
|
|
att_cache) |
|
|
x = residual + self.dropout(x_att) |
|
|
if not self.normalize_before: |
|
|
x = self.norm_mha(x) |
|
|
|
|
|
|
|
|
|
|
|
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) |
|
|
if self.conv_module is not None: |
|
|
residual = x |
|
|
if self.normalize_before: |
|
|
x = self.norm_conv(x) |
|
|
x, new_cnn_cache = self.conv_module(x, mask_pad, cnn_cache) |
|
|
x = residual + self.dropout(x) |
|
|
|
|
|
if not self.normalize_before: |
|
|
x = self.norm_conv(x) |
|
|
|
|
|
|
|
|
residual = x |
|
|
if self.normalize_before: |
|
|
x = self.norm_ff(x) |
|
|
|
|
|
x = residual + self.ff_scale * self.dropout(self.feed_forward(x)) |
|
|
if not self.normalize_before: |
|
|
x = self.norm_ff(x) |
|
|
|
|
|
if self.conv_module is not None: |
|
|
x = self.norm_final(x) |
|
|
|
|
|
return x, mask, new_att_cache, new_cnn_cache |
|
|
|
|
|
class ConvolutionModule(nn.Module): |
|
|
"""ConvolutionModule in Conformer model.""" |
|
|
|
|
|
def __init__(self, |
|
|
channels: int, |
|
|
kernel_size: int = 15, |
|
|
activation: nn.Module = nn.ReLU(), |
|
|
norm: str = "batch_norm", |
|
|
causal: bool = False, |
|
|
bias: bool = True): |
|
|
"""Construct an ConvolutionModule object. |
|
|
Args: |
|
|
channels (int): The number of channels of conv layers. |
|
|
kernel_size (int): Kernel size of conv layers. |
|
|
causal (int): Whether use causal convolution or not |
|
|
""" |
|
|
super().__init__() |
|
|
|
|
|
self.pointwise_conv1 = nn.Conv1d( |
|
|
channels, |
|
|
2 * channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0, |
|
|
bias=bias, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if causal: |
|
|
padding = 0 |
|
|
self.lorder = kernel_size - 1 |
|
|
else: |
|
|
|
|
|
assert (kernel_size - 1) % 2 == 0 |
|
|
padding = (kernel_size - 1) // 2 |
|
|
self.lorder = 0 |
|
|
self.depthwise_conv = nn.Conv1d( |
|
|
channels, |
|
|
channels, |
|
|
kernel_size, |
|
|
stride=1, |
|
|
padding=padding, |
|
|
groups=channels, |
|
|
bias=bias, |
|
|
) |
|
|
|
|
|
assert norm in ['batch_norm', 'layer_norm'] |
|
|
if norm == "batch_norm": |
|
|
self.use_layer_norm = False |
|
|
self.norm = nn.BatchNorm1d(channels) |
|
|
else: |
|
|
self.use_layer_norm = True |
|
|
self.norm = nn.LayerNorm(channels) |
|
|
|
|
|
self.pointwise_conv2 = nn.Conv1d( |
|
|
channels, |
|
|
channels, |
|
|
kernel_size=1, |
|
|
stride=1, |
|
|
padding=0, |
|
|
bias=bias, |
|
|
) |
|
|
self.activation = activation |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
|
cache: torch.Tensor = torch.zeros((0, 0, 0)), |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Compute convolution module. |
|
|
Args: |
|
|
x (torch.Tensor): Input tensor (#batch, time, channels). |
|
|
mask_pad (torch.Tensor): used for batch padding (#batch, 1, time), |
|
|
(0, 0, 0) means fake mask. |
|
|
cache (torch.Tensor): left context cache, it is only |
|
|
used in causal convolution (#batch, channels, cache_t), |
|
|
(0, 0, 0) meas fake cache. |
|
|
Returns: |
|
|
torch.Tensor: Output tensor (#batch, time, channels). |
|
|
""" |
|
|
|
|
|
x = x.transpose(1, 2) |
|
|
|
|
|
|
|
|
if mask_pad.size(2) > 0: |
|
|
x.masked_fill_(~mask_pad, 0.0) |
|
|
|
|
|
if self.lorder > 0: |
|
|
if cache.size(2) == 0: |
|
|
x = nn.functional.pad(x, (self.lorder, 0), 'constant', 0.0) |
|
|
else: |
|
|
assert cache.size(0) == x.size(0) |
|
|
assert cache.size(1) == x.size(1) |
|
|
x = torch.cat((cache, x), dim=2) |
|
|
assert (x.size(2) > self.lorder) |
|
|
new_cache = x[:, :, -self.lorder:] |
|
|
else: |
|
|
|
|
|
|
|
|
|
|
|
new_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) |
|
|
|
|
|
|
|
|
x = self.pointwise_conv1(x) |
|
|
x = nn.functional.glu(x, dim=1) |
|
|
|
|
|
|
|
|
x = self.depthwise_conv(x) |
|
|
if self.use_layer_norm: |
|
|
x = x.transpose(1, 2) |
|
|
x = self.activation(self.norm(x)) |
|
|
if self.use_layer_norm: |
|
|
x = x.transpose(1, 2) |
|
|
x = self.pointwise_conv2(x) |
|
|
|
|
|
if mask_pad.size(2) > 0: |
|
|
x.masked_fill_(~mask_pad, 0.0) |
|
|
|
|
|
return x.transpose(1, 2), new_cache |
|
|
|
|
|
class Upsample1D(nn.Module): |
|
|
"""A 1D upsampling layer with an optional convolution. |
|
|
|
|
|
Parameters: |
|
|
channels (`int`): |
|
|
number of channels in the inputs and outputs. |
|
|
use_conv (`bool`, default `False`): |
|
|
option to use a convolution. |
|
|
use_conv_transpose (`bool`, default `False`): |
|
|
option to use a convolution transpose. |
|
|
out_channels (`int`, optional): |
|
|
number of output channels. Defaults to `channels`. |
|
|
""" |
|
|
|
|
|
def __init__(self, channels: int, out_channels: int, stride: int = 2): |
|
|
super().__init__() |
|
|
self.channels = channels |
|
|
self.out_channels = out_channels |
|
|
self.stride = stride |
|
|
|
|
|
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0) |
|
|
|
|
|
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor): |
|
|
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest") |
|
|
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0) |
|
|
outputs = self.conv(outputs) |
|
|
return outputs, input_lengths * self.stride |
|
|
|
|
|
|
|
|
class PreLookaheadLayer(nn.Module): |
|
|
def __init__(self, channels: int, pre_lookahead_len: int = 1): |
|
|
super().__init__() |
|
|
self.channels = channels |
|
|
self.pre_lookahead_len = pre_lookahead_len |
|
|
self.conv1 = nn.Conv1d( |
|
|
channels, channels, |
|
|
kernel_size=pre_lookahead_len + 1, |
|
|
stride=1, padding=0, |
|
|
) |
|
|
self.conv2 = nn.Conv1d( |
|
|
channels, channels, |
|
|
kernel_size=3, stride=1, padding=0, |
|
|
) |
|
|
|
|
|
def forward(self, inputs: torch.Tensor) -> torch.Tensor: |
|
|
""" |
|
|
inputs: (batch_size, seq_len, channels) |
|
|
""" |
|
|
outputs = inputs.transpose(1, 2).contiguous() |
|
|
|
|
|
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0) |
|
|
outputs = F.leaky_relu(self.conv1(outputs)) |
|
|
|
|
|
outputs = F.pad(outputs, (2, 0), mode='constant', value=0.0) |
|
|
outputs = self.conv2(outputs) |
|
|
outputs = outputs.transpose(1, 2).contiguous() |
|
|
|
|
|
|
|
|
outputs = outputs + inputs |
|
|
return outputs |
|
|
|
|
|
class BaseSubsampling(torch.nn.Module): |
|
|
|
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
self.right_context = 0 |
|
|
self.subsampling_rate = 1 |
|
|
|
|
|
def position_encoding(self, offset: Union[int, torch.Tensor], |
|
|
size: int) -> torch.Tensor: |
|
|
return self.pos_enc.position_encoding(offset, size) |
|
|
|
|
|
class LinearNoSubsampling(BaseSubsampling): |
|
|
"""Linear transform the input without subsampling |
|
|
|
|
|
Args: |
|
|
idim (int): Input dimension. |
|
|
odim (int): Output dimension. |
|
|
dropout_rate (float): Dropout rate. |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, idim: int, odim: int, dropout_rate: float, |
|
|
pos_enc_class: torch.nn.Module): |
|
|
"""Construct an linear object.""" |
|
|
super().__init__() |
|
|
self.out = torch.nn.Sequential( |
|
|
torch.nn.Linear(idim, odim), |
|
|
torch.nn.LayerNorm(odim, eps=1e-5), |
|
|
torch.nn.Dropout(dropout_rate), |
|
|
) |
|
|
self.pos_enc = pos_enc_class |
|
|
self.right_context = 0 |
|
|
self.subsampling_rate = 1 |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
x: torch.Tensor, |
|
|
x_mask: torch.Tensor, |
|
|
offset: Union[int, torch.Tensor] = 0 |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
"""Input x. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): Input tensor (#batch, time, idim). |
|
|
x_mask (torch.Tensor): Input mask (#batch, 1, time). |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: linear input tensor (#batch, time', odim), |
|
|
where time' = time . |
|
|
torch.Tensor: linear input mask (#batch, 1, time'), |
|
|
where time' = time . |
|
|
|
|
|
""" |
|
|
x = self.out(x) |
|
|
x, pos_emb = self.pos_enc(x, offset) |
|
|
return x, pos_emb, x_mask |
|
|
|
|
|
class EspnetRelPositionalEncoding(torch.nn.Module): |
|
|
"""Relative positional encoding module (new implementation). |
|
|
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816. |
|
|
|
|
|
See : Appendix B in https://arxiv.org/abs/1901.02860 |
|
|
|
|
|
Args: |
|
|
d_model (int): Embedding dimension. |
|
|
dropout_rate (float): Dropout rate. |
|
|
max_len (int): Maximum input length. |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): |
|
|
"""Construct an PositionalEncoding object.""" |
|
|
super(EspnetRelPositionalEncoding, self).__init__() |
|
|
self.d_model = d_model |
|
|
self.xscale = math.sqrt(self.d_model) |
|
|
self.dropout = torch.nn.Dropout(p=dropout_rate) |
|
|
self.pe = None |
|
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) |
|
|
|
|
|
def extend_pe(self, x: torch.Tensor): |
|
|
"""Reset the positional encodings.""" |
|
|
if self.pe is not None: |
|
|
|
|
|
|
|
|
if self.pe.size(1) >= x.size(1) * 2 - 1: |
|
|
if self.pe.dtype != x.dtype or self.pe.device != x.device: |
|
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device) |
|
|
return |
|
|
|
|
|
|
|
|
|
|
|
pe_positive = torch.zeros(x.size(1), self.d_model) |
|
|
pe_negative = torch.zeros(x.size(1), self.d_model) |
|
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) |
|
|
div_term = torch.exp( |
|
|
torch.arange(0, self.d_model, 2, dtype=torch.float32) |
|
|
* -(math.log(10000.0) / self.d_model) |
|
|
) |
|
|
pe_positive[:, 0::2] = torch.sin(position * div_term) |
|
|
pe_positive[:, 1::2] = torch.cos(position * div_term) |
|
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) |
|
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) |
|
|
pe_negative = pe_negative[1:].unsqueeze(0) |
|
|
pe = torch.cat([pe_positive, pe_negative], dim=1) |
|
|
self.pe = pe.to(device=x.device, dtype=x.dtype) |
|
|
|
|
|
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0) \ |
|
|
-> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Add positional encoding. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
|
|
|
|
""" |
|
|
self.extend_pe(x) |
|
|
x = x * self.xscale |
|
|
pos_emb = self.position_encoding(size=x.size(1), offset=offset) |
|
|
return self.dropout(x), self.dropout(pos_emb) |
|
|
|
|
|
def position_encoding(self, |
|
|
offset: Union[int, torch.Tensor], |
|
|
size: int) -> torch.Tensor: |
|
|
""" For getting encoding in a streaming fashion |
|
|
|
|
|
Attention!!!!! |
|
|
we apply dropout only once at the whole utterance level in a none |
|
|
streaming way, but will call this function several times with |
|
|
increasing input size in a streaming scenario, so the dropout will |
|
|
be applied several times. |
|
|
|
|
|
Args: |
|
|
offset (int or torch.tensor): start offset |
|
|
size (int): required size of position encoding |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Corresponding encoding |
|
|
""" |
|
|
pos_emb = self.pe[ |
|
|
:, |
|
|
self.pe.size(1) // 2 - size + 1: self.pe.size(1) // 2 + size, |
|
|
] |
|
|
return pos_emb |
|
|
|
|
|
|
|
|
class MultiHeadedAttention(nn.Module): |
|
|
"""Multi-Head Attention layer. |
|
|
|
|
|
Args: |
|
|
n_head (int): The number of heads. |
|
|
n_feat (int): The number of features. |
|
|
dropout_rate (float): Dropout rate. |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
n_head: int, |
|
|
n_feat: int, |
|
|
dropout_rate: float, |
|
|
key_bias: bool = True): |
|
|
"""Construct an MultiHeadedAttention object.""" |
|
|
super().__init__() |
|
|
assert n_feat % n_head == 0 |
|
|
|
|
|
self.d_k = n_feat // n_head |
|
|
self.h = n_head |
|
|
self.linear_q = nn.Linear(n_feat, n_feat) |
|
|
self.linear_k = nn.Linear(n_feat, n_feat, bias=key_bias) |
|
|
self.linear_v = nn.Linear(n_feat, n_feat) |
|
|
self.linear_out = nn.Linear(n_feat, n_feat) |
|
|
self.dropout = nn.Dropout(p=dropout_rate) |
|
|
|
|
|
def forward_qkv( |
|
|
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor |
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
"""Transform query, key and value. |
|
|
|
|
|
Args: |
|
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Transformed query tensor, size |
|
|
(#batch, n_head, time1, d_k). |
|
|
torch.Tensor: Transformed key tensor, size |
|
|
(#batch, n_head, time2, d_k). |
|
|
torch.Tensor: Transformed value tensor, size |
|
|
(#batch, n_head, time2, d_k). |
|
|
|
|
|
""" |
|
|
n_batch = query.size(0) |
|
|
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) |
|
|
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) |
|
|
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) |
|
|
q = q.transpose(1, 2) |
|
|
k = k.transpose(1, 2) |
|
|
v = v.transpose(1, 2) |
|
|
|
|
|
return q, k, v |
|
|
|
|
|
def forward_attention( |
|
|
self, |
|
|
value: torch.Tensor, |
|
|
scores: torch.Tensor, |
|
|
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) |
|
|
) -> torch.Tensor: |
|
|
"""Compute attention context vector. |
|
|
|
|
|
Args: |
|
|
value (torch.Tensor): Transformed value, size |
|
|
(#batch, n_head, time2, d_k). |
|
|
scores (torch.Tensor): Attention score, size |
|
|
(#batch, n_head, time1, time2). |
|
|
mask (torch.Tensor): Mask, size (#batch, 1, time2) or |
|
|
(#batch, time1, time2), (0, 0, 0) means fake mask. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Transformed value (#batch, time1, d_model) |
|
|
weighted by the attention score (#batch, time1, time2). |
|
|
|
|
|
""" |
|
|
n_batch = value.size(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if mask.size(2) > 0: |
|
|
mask = mask.unsqueeze(1).eq(0) |
|
|
|
|
|
mask = mask[:, :, :, :scores.size(-1)] |
|
|
scores = scores.masked_fill(mask, -float('inf')) |
|
|
attn = torch.softmax(scores, dim=-1).masked_fill( |
|
|
mask, 0.0) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
attn = torch.softmax(scores, dim=-1) |
|
|
|
|
|
p_attn = self.dropout(attn) |
|
|
x = torch.matmul(p_attn, value) |
|
|
x = (x.transpose(1, 2).contiguous().view(n_batch, -1, |
|
|
self.h * self.d_k) |
|
|
) |
|
|
|
|
|
return self.linear_out(x) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
|
pos_emb: torch.Tensor = torch.empty(0), |
|
|
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Compute scaled dot product attention. |
|
|
|
|
|
Args: |
|
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
|
(#batch, time1, time2). |
|
|
1.When applying cross attention between decoder and encoder, |
|
|
the batch padding mask for input is in (#batch, 1, T) shape. |
|
|
2.When applying self attention of encoder, |
|
|
the mask is in (#batch, T, T) shape. |
|
|
3.When applying self attention of decoder, |
|
|
the mask is in (#batch, L, L) shape. |
|
|
4.If the different position in decoder see different block |
|
|
of the encoder, such as Mocha, the passed in mask could be |
|
|
in (#batch, L, T) shape. But there is no such case in current |
|
|
CosyVoice. |
|
|
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), |
|
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
|
and `head * d_k == size` |
|
|
|
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
|
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) |
|
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
|
and `head * d_k == size` |
|
|
|
|
|
""" |
|
|
q, k, v = self.forward_qkv(query, key, value) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cache.size(0) > 0: |
|
|
key_cache, value_cache = torch.split(cache, |
|
|
cache.size(-1) // 2, |
|
|
dim=-1) |
|
|
k = torch.cat([key_cache, k], dim=2) |
|
|
v = torch.cat([value_cache, v], dim=2) |
|
|
|
|
|
|
|
|
new_cache = torch.cat((k, v), dim=-1) |
|
|
|
|
|
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) |
|
|
return self.forward_attention(v, scores, mask), new_cache |
|
|
|
|
|
|
|
|
class RelPositionMultiHeadedAttention(MultiHeadedAttention): |
|
|
"""Multi-Head Attention layer with relative position encoding. |
|
|
Paper: https://arxiv.org/abs/1901.02860 |
|
|
Args: |
|
|
n_head (int): The number of heads. |
|
|
n_feat (int): The number of features. |
|
|
dropout_rate (float): Dropout rate. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
n_head: int, |
|
|
n_feat: int, |
|
|
dropout_rate: float, |
|
|
key_bias: bool = True): |
|
|
"""Construct an RelPositionMultiHeadedAttention object.""" |
|
|
super().__init__(n_head, n_feat, dropout_rate, key_bias) |
|
|
|
|
|
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) |
|
|
|
|
|
|
|
|
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) |
|
|
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) |
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_u) |
|
|
torch.nn.init.xavier_uniform_(self.pos_bias_v) |
|
|
|
|
|
def rel_shift(self, x: torch.Tensor) -> torch.Tensor: |
|
|
"""Compute relative positional encoding. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): Input tensor (batch, head, time1, 2*time1-1). |
|
|
time1 means the length of query vector. |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: Output tensor. |
|
|
|
|
|
""" |
|
|
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), |
|
|
device=x.device, |
|
|
dtype=x.dtype) |
|
|
x_padded = torch.cat([zero_pad, x], dim=-1) |
|
|
|
|
|
x_padded = x_padded.view(x.size()[0], |
|
|
x.size()[1], |
|
|
x.size(3) + 1, x.size(2)) |
|
|
x = x_padded[:, :, 1:].view_as(x)[ |
|
|
:, :, :, : x.size(-1) // 2 + 1 |
|
|
] |
|
|
return x |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), |
|
|
pos_emb: torch.Tensor = torch.empty(0), |
|
|
cache: torch.Tensor = torch.zeros((0, 0, 0, 0)) |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding. |
|
|
Args: |
|
|
query (torch.Tensor): Query tensor (#batch, time1, size). |
|
|
key (torch.Tensor): Key tensor (#batch, time2, size). |
|
|
value (torch.Tensor): Value tensor (#batch, time2, size). |
|
|
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or |
|
|
(#batch, time1, time2), (0, 0, 0) means fake mask. |
|
|
pos_emb (torch.Tensor): Positional embedding tensor |
|
|
(#batch, time2, size). |
|
|
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), |
|
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
|
and `head * d_k == size` |
|
|
Returns: |
|
|
torch.Tensor: Output tensor (#batch, time1, d_model). |
|
|
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) |
|
|
where `cache_t == chunk_size * num_decoding_left_chunks` |
|
|
and `head * d_k == size` |
|
|
""" |
|
|
q, k, v = self.forward_qkv(query, key, value) |
|
|
q = q.transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cache.size(0) > 0: |
|
|
key_cache, value_cache = torch.split(cache, |
|
|
cache.size(-1) // 2, |
|
|
dim=-1) |
|
|
k = torch.cat([key_cache, k], dim=2) |
|
|
v = torch.cat([value_cache, v], dim=2) |
|
|
|
|
|
|
|
|
new_cache = torch.cat((k, v), dim=-1) |
|
|
|
|
|
n_batch_pos = pos_emb.size(0) |
|
|
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) |
|
|
p = p.transpose(1, 2) |
|
|
|
|
|
|
|
|
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) |
|
|
|
|
|
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) |
|
|
|
|
|
|
|
|
|
|
|
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) |
|
|
|
|
|
if matrix_ac.shape != matrix_bd.shape: |
|
|
matrix_bd = self.rel_shift(matrix_bd) |
|
|
|
|
|
scores = (matrix_ac + matrix_bd) / math.sqrt( |
|
|
self.d_k) |
|
|
|
|
|
return self.forward_attention(v, scores, mask), new_cache |
|
|
|
|
|
class UpsampleConformerEncoder(torch.nn.Module): |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
input_size: int, |
|
|
output_size: int = 256, |
|
|
attention_heads: int = 4, |
|
|
linear_units: int = 2048, |
|
|
num_blocks: int = 6, |
|
|
dropout_rate: float = 0.1, |
|
|
positional_dropout_rate: float = 0.1, |
|
|
attention_dropout_rate: float = 0.0, |
|
|
input_layer: str = "conv2d", |
|
|
pos_enc_layer_type: str = "rel_pos", |
|
|
normalize_before: bool = True, |
|
|
static_chunk_size: int = 0, |
|
|
use_dynamic_chunk: bool = False, |
|
|
global_cmvn: torch.nn.Module = None, |
|
|
use_dynamic_left_chunk: bool = False, |
|
|
positionwise_conv_kernel_size: int = 1, |
|
|
macaron_style: bool = True, |
|
|
selfattention_layer_type: str = "rel_selfattn", |
|
|
activation_type: str = "swish", |
|
|
use_cnn_module: bool = True, |
|
|
cnn_module_kernel: int = 15, |
|
|
causal: bool = False, |
|
|
cnn_module_norm: str = "batch_norm", |
|
|
key_bias: bool = True, |
|
|
gradient_checkpointing: bool = False, |
|
|
): |
|
|
""" |
|
|
Args: |
|
|
input_size (int): input dim |
|
|
output_size (int): dimension of attention |
|
|
attention_heads (int): the number of heads of multi head attention |
|
|
linear_units (int): the hidden units number of position-wise feed |
|
|
forward |
|
|
num_blocks (int): the number of decoder blocks |
|
|
dropout_rate (float): dropout rate |
|
|
attention_dropout_rate (float): dropout rate in attention |
|
|
positional_dropout_rate (float): dropout rate after adding |
|
|
positional encoding |
|
|
input_layer (str): input layer type. |
|
|
optional [linear, conv2d, conv2d6, conv2d8] |
|
|
pos_enc_layer_type (str): Encoder positional encoding layer type. |
|
|
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos] |
|
|
normalize_before (bool): |
|
|
True: use layer_norm before each sub-block of a layer. |
|
|
False: use layer_norm after each sub-block of a layer. |
|
|
static_chunk_size (int): chunk size for static chunk training and |
|
|
decoding |
|
|
use_dynamic_chunk (bool): whether use dynamic chunk size for |
|
|
training or not, You can only use fixed chunk(chunk_size > 0) |
|
|
or dyanmic chunk size(use_dynamic_chunk = True) |
|
|
global_cmvn (Optional[torch.nn.Module]): Optional GlobalCMVN module |
|
|
use_dynamic_left_chunk (bool): whether use dynamic left chunk in |
|
|
dynamic chunk training |
|
|
key_bias: whether use bias in attention.linear_k, False for whisper models. |
|
|
gradient_checkpointing: rerunning a forward-pass segment for each |
|
|
checkpointed segment during backward. |
|
|
""" |
|
|
super().__init__() |
|
|
self._output_size = output_size |
|
|
|
|
|
self.global_cmvn = global_cmvn |
|
|
|
|
|
self.embed = LinearNoSubsampling( |
|
|
input_size, |
|
|
output_size, |
|
|
dropout_rate, |
|
|
|
|
|
EspnetRelPositionalEncoding( |
|
|
output_size, |
|
|
positional_dropout_rate, |
|
|
), |
|
|
) |
|
|
|
|
|
self.normalize_before = normalize_before |
|
|
self.after_norm = torch.nn.LayerNorm(output_size, eps=1e-5) |
|
|
self.static_chunk_size = static_chunk_size |
|
|
self.use_dynamic_chunk = use_dynamic_chunk |
|
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk |
|
|
self.gradient_checkpointing = gradient_checkpointing |
|
|
|
|
|
activation = getattr(torch.nn, "SiLU", Swish)() |
|
|
|
|
|
encoder_selfattn_layer_args = ( |
|
|
attention_heads, |
|
|
output_size, |
|
|
attention_dropout_rate, |
|
|
key_bias, |
|
|
) |
|
|
|
|
|
positionwise_layer_args = ( |
|
|
output_size, |
|
|
linear_units, |
|
|
dropout_rate, |
|
|
activation, |
|
|
) |
|
|
|
|
|
convolution_layer_args = (output_size, cnn_module_kernel, activation, |
|
|
cnn_module_norm, causal) |
|
|
self.pre_lookahead_layer = PreLookaheadLayer(channels=512, pre_lookahead_len=3) |
|
|
self.encoders = torch.nn.ModuleList([ |
|
|
ConformerEncoderLayer( |
|
|
output_size, |
|
|
|
|
|
RelPositionMultiHeadedAttention( |
|
|
*encoder_selfattn_layer_args), |
|
|
PositionwiseFeedForward(*positionwise_layer_args), |
|
|
PositionwiseFeedForward( |
|
|
*positionwise_layer_args) if macaron_style else None, |
|
|
ConvolutionModule( |
|
|
*convolution_layer_args) if use_cnn_module else None, |
|
|
dropout_rate, |
|
|
normalize_before, |
|
|
) for _ in range(num_blocks) |
|
|
]) |
|
|
self.up_layer = Upsample1D(channels=512, out_channels=512, stride=2) |
|
|
|
|
|
self.up_embed = LinearNoSubsampling( |
|
|
input_size, |
|
|
output_size, |
|
|
dropout_rate, |
|
|
|
|
|
EspnetRelPositionalEncoding( |
|
|
output_size, |
|
|
positional_dropout_rate, |
|
|
), |
|
|
) |
|
|
self.up_encoders = torch.nn.ModuleList([ |
|
|
ConformerEncoderLayer( |
|
|
output_size, |
|
|
|
|
|
RelPositionMultiHeadedAttention( |
|
|
*encoder_selfattn_layer_args), |
|
|
PositionwiseFeedForward(*positionwise_layer_args), |
|
|
PositionwiseFeedForward( |
|
|
*positionwise_layer_args) if macaron_style else None, |
|
|
ConvolutionModule( |
|
|
*convolution_layer_args) if use_cnn_module else None, |
|
|
dropout_rate, |
|
|
normalize_before, |
|
|
) for _ in range(4) |
|
|
]) |
|
|
|
|
|
def output_size(self) -> int: |
|
|
return self._output_size |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
xs: torch.Tensor, |
|
|
xs_lens: torch.Tensor, |
|
|
decoding_chunk_size: int = 0, |
|
|
num_decoding_left_chunks: int = -1, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Embed positions in tensor. |
|
|
|
|
|
Args: |
|
|
xs: padded input tensor (B, T, D) |
|
|
xs_lens: input length (B) |
|
|
decoding_chunk_size: decoding chunk size for dynamic chunk |
|
|
0: default for training, use random dynamic chunk. |
|
|
<0: for decoding, use full chunk. |
|
|
>0: for decoding, use fixed chunk size as set. |
|
|
num_decoding_left_chunks: number of left chunks, this is for decoding, |
|
|
the chunk size is decoding_chunk_size. |
|
|
>=0: use num_decoding_left_chunks |
|
|
<0: use all left chunks |
|
|
Returns: |
|
|
encoder output tensor xs, and subsampled masks |
|
|
xs: padded output tensor (B, T' ~= T/subsample_rate, D) |
|
|
masks: torch.Tensor batch padding mask after subsample |
|
|
(B, 1, T' ~= T/subsample_rate) |
|
|
NOTE(xcsong): |
|
|
We pass the `__call__` method of the modules instead of `forward` to the |
|
|
checkpointing API because `__call__` attaches all the hooks of the module. |
|
|
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2 |
|
|
""" |
|
|
T = xs.size(1) |
|
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) |
|
|
if self.global_cmvn is not None: |
|
|
xs = self.global_cmvn(xs) |
|
|
xs, pos_emb, masks = self.embed(xs, masks) |
|
|
mask_pad = masks |
|
|
chunk_masks = add_optional_chunk_mask(xs, masks, |
|
|
self.use_dynamic_chunk, |
|
|
self.use_dynamic_left_chunk, |
|
|
decoding_chunk_size, |
|
|
self.static_chunk_size, |
|
|
num_decoding_left_chunks) |
|
|
|
|
|
xs = self.pre_lookahead_layer(xs) |
|
|
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad) |
|
|
|
|
|
|
|
|
xs = xs.transpose(1, 2).contiguous() |
|
|
xs, xs_lens = self.up_layer(xs, xs_lens) |
|
|
xs = xs.transpose(1, 2).contiguous() |
|
|
T = xs.size(1) |
|
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) |
|
|
xs, pos_emb, masks = self.up_embed(xs, masks) |
|
|
mask_pad = masks |
|
|
chunk_masks = add_optional_chunk_mask(xs, masks, |
|
|
self.use_dynamic_chunk, |
|
|
self.use_dynamic_left_chunk, |
|
|
decoding_chunk_size, |
|
|
self.static_chunk_size * self.up_layer.stride, |
|
|
num_decoding_left_chunks) |
|
|
xs = self.forward_up_layers(xs, chunk_masks, pos_emb, mask_pad) |
|
|
|
|
|
if self.normalize_before: |
|
|
xs = self.after_norm(xs) |
|
|
|
|
|
|
|
|
|
|
|
return xs, masks |
|
|
|
|
|
def forward_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, |
|
|
pos_emb: torch.Tensor, |
|
|
mask_pad: torch.Tensor) -> torch.Tensor: |
|
|
for layer in self.encoders: |
|
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) |
|
|
return xs |
|
|
|
|
|
def forward_up_layers(self, xs: torch.Tensor, chunk_masks: torch.Tensor, |
|
|
pos_emb: torch.Tensor, |
|
|
mask_pad: torch.Tensor) -> torch.Tensor: |
|
|
for layer in self.up_encoders: |
|
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad) |
|
|
return xs |
|
|
|
|
|
class CausalMaskedDiffWithXvec(PreTrainedModel): |
|
|
""" |
|
|
cosyvoice2.0 flow模块 |
|
|
""" |
|
|
def __init__( |
|
|
self, |
|
|
config: FlowConfig, |
|
|
mel_feat_conf: Dict = { |
|
|
'n_fft': 1024, |
|
|
'num_mels': 80, |
|
|
'sampling_rate': 22050, |
|
|
'hop_size': 256, |
|
|
'win_size': 1024, |
|
|
'fmin': 0, |
|
|
'fmax': 8000, |
|
|
}, |
|
|
): |
|
|
super().__init__(config) |
|
|
self.input_size = config.input_size |
|
|
self.output_size = config.output_size |
|
|
self.decoder_conf = config.decoder_config |
|
|
self.mel_feat_conf = mel_feat_conf |
|
|
self.vocab_size = config.vocab_size |
|
|
self.output_type = config.output_type |
|
|
self.input_frame_rate = config.input_frame_rate |
|
|
self.input_embedding = nn.Embedding(config.vocab_size, config.input_size) |
|
|
self.spk_embed_affine_layer = torch.nn.Linear(config.spk_embed_dim, config.output_size) |
|
|
self.encoder = UpsampleConformerEncoder(**config.encoder_config) |
|
|
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), config.output_size) |
|
|
|
|
|
decoder_config = copy.deepcopy(config.decoder_config) |
|
|
decoder_config['cfm_params'] = DictConfig(decoder_config['cfm_params']) |
|
|
self.decoder = CausalConditionalCFM(**decoder_config) |
|
|
|
|
|
self.only_mask_loss = config.only_mask_loss |
|
|
self.token_mel_ratio = config.token_mel_ratio |
|
|
self.pre_lookahead_len = config.pre_lookahead_len |
|
|
|
|
|
@torch.inference_mode() |
|
|
def inference( |
|
|
self, |
|
|
token, |
|
|
token_len, |
|
|
prompt_token, |
|
|
prompt_token_len, |
|
|
prompt_feat, |
|
|
prompt_feat_len, |
|
|
embedding, |
|
|
finalize, |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
embedding = embedding.to(self.spk_embed_affine_layer.weight.data.dtype) |
|
|
prompt_feat = prompt_feat.to(self.spk_embed_affine_layer.weight.data.dtype) |
|
|
|
|
|
assert token.shape[0] == 1 |
|
|
|
|
|
embedding = F.normalize(embedding, dim=1) |
|
|
embedding = self.spk_embed_affine_layer(embedding) |
|
|
|
|
|
|
|
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len |
|
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding) |
|
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask |
|
|
|
|
|
|
|
|
h, h_lengths = self.encoder(token, token_len) |
|
|
if finalize is False: |
|
|
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio] |
|
|
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1] |
|
|
h = self.encoder_proj(h) |
|
|
|
|
|
|
|
|
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype) |
|
|
conds[:, :mel_len1] = prompt_feat |
|
|
conds = conds.transpose(1, 2) |
|
|
|
|
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h) |
|
|
feat, _ = self.decoder( |
|
|
mu=h.transpose(1, 2).contiguous(), |
|
|
mask=mask.unsqueeze(1), |
|
|
spks=embedding, |
|
|
cond=conds, |
|
|
n_timesteps=10 |
|
|
) |
|
|
feat = feat[:, :, mel_len1:] |
|
|
assert feat.shape[2] == mel_len2 |
|
|
return feat.float(), None |
|
|
|