models_for_qa_cut
This model is a fine-tuned version of google-bert/bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6446
Model description
使用說明
from transformers import pipeline
pipe = pipeline("question-answering", model="roberthsu2003/models_for_qa_cut")
answer = pipe(question="蔡英文何時卸任?",context="蔡英文於2024年5月卸任中華民國總統,交棒給時任副總統賴清德。卸任後較少公開露面,直至2024年10月她受邀訪問歐洲。[25]")
print(answer['answer'])
#'2024年5月'
context='台積電也承諾未來在台灣的各項投資不變,計劃未來在本國建造九座廠,包括新竹、高雄、台中、嘉義和台南等地,在2035年,台灣仍將生產高達80%的晶片。'''
answer = pipe(question='台積電未來要建立幾座廠',context=context)
print(answer['answer'])
answer = pipe(question='2035年在台灣生產的晶片比例?',context=context)
print(answer['answer'])
#九座
#80%
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.6584 | 1.0 | 842 | 0.6412 |
| 0.4002 | 2.0 | 1684 | 0.6446 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 3
Model tree for roberthsu2003/models_for_qa_cut
Base model
google-bert/bert-base-chinese