You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

roberta-fnf-taglish-v1

RoBERTa-Tagalog fine-tuned for binary fake-news detection (real, fake).

Training setup

  • Cluster-disjoint splits on cleaned FNF corpus
  • Train-only Taglish paraphrase augmentation
  • Base tokenizer: jcblaise/roberta-tagalog-base

Quickstart

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
repo = 'renshhhh/roberta-fnf-taglish-v1'
tok = AutoTokenizer.from_pretrained(repo, use_fast=True)
mdl = AutoModelForSequenceClassification.from_pretrained(repo)
text = 'Ito ay balitang halimbawa lang, hindi totoong artikulo.'
batch = tok(text, return_tensors='pt', truncation=True, max_length=256)
with torch.no_grad():
    probs = mdl(**batch).logits.softmax(-1).tolist()[0]
id2label = mdl.config.id2label
print({id2label[i]: float(probs[i]) for i in range(len(probs))})

Eval (cluster-disjoint test)

  • Accuracy = 0.947
  • Weighted F1 = 0.947
Downloads last month
26
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ 1 Ask for provider support

Evaluation results