deberta-toxic-reward-grpo3

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3799
  • Accuracy: 0.8056
  • Precision: 0.7459
  • Recall: 0.9897
  • F1: 0.8507
  • Auc: 0.8931

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 13
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc
No log 1.0 71 0.3680 0.8024 0.7432 0.9883 0.8484 0.8832
No log 2.0 142 0.3691 0.8028 0.7442 0.9865 0.8484 0.8877
No log 3.0 213 0.4363 0.7915 0.7288 0.9992 0.8428 0.8768
No log 4.0 284 0.3638 0.8053 0.7451 0.9909 0.8506 0.8914
No log 5.0 355 0.3637 0.8045 0.7467 0.9845 0.8493 0.8920
No log 6.0 426 0.3801 0.8056 0.7459 0.9897 0.8507 0.8931
No log 7.0 497 0.3841 0.8045 0.7467 0.9845 0.8493 0.8931
0.3585 8.0 568 0.3898 0.8046 0.7483 0.9807 0.8489 0.8927

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.1+cu130
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
101
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for reichenbach/deberta-toxic-reward-grpo3

Finetuned
(479)
this model