|
|
--- |
|
|
language: |
|
|
- zh |
|
|
- en |
|
|
tags: |
|
|
- translation |
|
|
license: cc-by-4.0 |
|
|
datasets: |
|
|
- quickmt/quickmt-train.zh-en |
|
|
model-index: |
|
|
- name: quickmt-zh-en |
|
|
results: |
|
|
- task: |
|
|
name: Translation zho-eng |
|
|
type: translation |
|
|
args: zho-eng |
|
|
dataset: |
|
|
name: flores101-devtest |
|
|
type: flores_101 |
|
|
args: zho_Hans eng_Latn devtest |
|
|
metrics: |
|
|
- name: BLEU |
|
|
type: bleu |
|
|
value: 28.58 |
|
|
- name: CHRF |
|
|
type: chrf |
|
|
value: 57.46 |
|
|
--- |
|
|
|
|
|
|
|
|
# `quickmt-zh-en` Neural Machine Translation Model |
|
|
|
|
|
# Usage |
|
|
|
|
|
## Install `quickmt` |
|
|
|
|
|
```bash |
|
|
git clone https://github.com/quickmt/quickmt.git |
|
|
pip install ./quickmt/ |
|
|
``` |
|
|
|
|
|
## Download model |
|
|
|
|
|
```bash |
|
|
quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en |
|
|
``` |
|
|
|
|
|
## Use model |
|
|
|
|
|
Inference with `quickmt`: |
|
|
|
|
|
```python |
|
|
from quickmt import Translator |
|
|
|
|
|
# Auto-detects GPU, set to "cpu" to force CPU inference |
|
|
t = Translator("./quickmt-zh-en/", device="auto") |
|
|
|
|
|
# Translate - set beam size to 5 for higher quality (but slower speed) |
|
|
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], beam_size=1) |
|
|
|
|
|
# Get alternative translations by sampling |
|
|
# You can pass any cTranslate2 `translate_batch` arguments |
|
|
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9) |
|
|
``` |
|
|
|
|
|
The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use the model files directly if you want. It would be fairly easy to get them to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. |
|
|
|
|
|
# Model Information |
|
|
|
|
|
* Trained using [`eole`](https://github.com/eole-nlp/eole) |
|
|
- It took about 1 day on a single RTX 4090 on [vast.ai](https://cloud.vast.ai) |
|
|
* Exported for fast inference to []CTranslate2](https://github.com/OpenNMT/CTranslate2) format |
|
|
* Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main |
|
|
|
|
|
## Metrics |
|
|
|
|
|
BLEU and CHRF2 calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the Flores200 `devtest` test set ("zho_Hans"->"eng_Latn"). |
|
|
|
|
|
"Time" is the time to translate the following input with a single CPU core: |
|
|
|
|
|
> 2019冠状病毒病(英語:Coronavirus disease 2019,缩写:COVID-19[17][18]),是一種由嚴重急性呼吸系統綜合症冠狀病毒2型(縮寫:SARS-CoV-2)引發的傳染病,导致了一场持续的疫情,成为人類歷史上致死人數最多的流行病之一。 |
|
|
|
|
|
| Model | bleu | chrf2 | Time (s) | |
|
|
| -------------------------------- | ----- | ----- | ---- | |
|
|
| quickmt/quickmt-zh-en | 28.58 | 57.46 | 0.670 | |
|
|
| Helsinki-NLP/opus-mt-zh-en | 23.35 | 53.60 | 0.838 | |
|
|
| facebook/m2m100_418M | 18.96 | 50.06 | 11.5 | |
|
|
| facebook/nllb-200-distilled-600M | 26.22 | 55.17 | 13.2 | |
|
|
| facebook/nllb-200-distilled-1.3B | 28.54 | 57.34 | 23.6 | |
|
|
| facebook/m2m100_1.2B | 24.68 | 54.68 | 25.7 | |
|
|
| google/madlad400-3b-mt | 28.74 | 58.01 | ??? | |
|
|
|
|
|
`quickmt-zh-en` is the fastest and delivers fairly high quality. |
|
|
|
|
|
Helsinki-NLP/opus-mt-zh-en is one of the most downloaded machine translation models on HuggingFace, and this model is considerably more accurate *and* a bit faster. |
|
|
|
|
|
|
|
|
## Training Configuration |
|
|
|
|
|
```yaml |
|
|
### Vocab |
|
|
src_vocab_size: 20000 |
|
|
tgt_vocab_size: 20000 |
|
|
share_vocab: False |
|
|
|
|
|
data: |
|
|
corpus_1: |
|
|
path_src: hf://quickmt/quickmt-train-zh-en/zh |
|
|
path_tgt: hf://quickmt/quickmt-train-zh-en/en |
|
|
path_sco: hf://quickmt/quickmt-train-zh-en/sco |
|
|
valid: |
|
|
path_src: zh-en/dev.zho |
|
|
path_tgt: zh-en/dev.eng |
|
|
|
|
|
transforms: [sentencepiece, filtertoolong] |
|
|
transforms_configs: |
|
|
sentencepiece: |
|
|
src_subword_model: "zh-en/src.spm.model" |
|
|
tgt_subword_model: "zh-en/tgt.spm.model" |
|
|
filtertoolong: |
|
|
src_seq_length: 512 |
|
|
tgt_seq_length: 512 |
|
|
|
|
|
training: |
|
|
# Run configuration |
|
|
model_path: quickmt-zh-en |
|
|
keep_checkpoint: 4 |
|
|
save_checkpoint_steps: 1000 |
|
|
train_steps: 104000 |
|
|
valid_steps: 1000 |
|
|
|
|
|
# Train on a single GPU |
|
|
world_size: 1 |
|
|
gpu_ranks: [0] |
|
|
|
|
|
# Batching |
|
|
batch_type: "tokens" |
|
|
batch_size: 13312 |
|
|
valid_batch_size: 13312 |
|
|
batch_size_multiple: 8 |
|
|
accum_count: [4] |
|
|
accum_steps: [0] |
|
|
|
|
|
# Optimizer & Compute |
|
|
compute_dtype: "bfloat16" |
|
|
optim: "pagedadamw8bit" |
|
|
learning_rate: 1.0 |
|
|
warmup_steps: 10000 |
|
|
decay_method: "noam" |
|
|
adam_beta2: 0.998 |
|
|
|
|
|
# Data loading |
|
|
bucket_size: 262144 |
|
|
num_workers: 4 |
|
|
prefetch_factor: 100 |
|
|
|
|
|
# Hyperparams |
|
|
dropout_steps: [0] |
|
|
dropout: [0.1] |
|
|
attention_dropout: [0.1] |
|
|
max_grad_norm: 0 |
|
|
label_smoothing: 0.1 |
|
|
average_decay: 0.0001 |
|
|
param_init_method: xavier_uniform |
|
|
normalization: "tokens" |
|
|
|
|
|
model: |
|
|
architecture: "transformer" |
|
|
layer_norm: standard |
|
|
share_embeddings: false |
|
|
share_decoder_embeddings: true |
|
|
add_ffnbias: true |
|
|
mlp_activation_fn: gated-silu |
|
|
add_estimator: false |
|
|
add_qkvbias: false |
|
|
norm_eps: 1e-6 |
|
|
hidden_size: 1024 |
|
|
encoder: |
|
|
layers: 8 |
|
|
decoder: |
|
|
layers: 2 |
|
|
heads: 16 |
|
|
transformer_ff: 4096 |
|
|
embeddings: |
|
|
word_vec_size: 1024 |
|
|
position_encoding_type: "SinusoidalInterleaved" |
|
|
``` |