SINet: Optimized for Mobile Deployment

Lightweight portrait segmentation for background removal

SINet is a machine learning model that is designed to segment people from close-up portrait images in real time.

This model is an implementation of SINet found here.

This repository provides scripts to run SINet on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: SINet.pth
    • Input resolution: 224x224
    • Number of output classes: 2 (foreground / background)
    • Number of parameters: 91.9K
    • Model size (float): 415 KB
    • Model size (w8a8): 241 KB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
SINet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 3.518 ms 0 - 127 MB NPU SINet.tflite
SINet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 3.505 ms 1 - 125 MB NPU SINet.dlc
SINet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 2.35 ms 0 - 147 MB NPU SINet.tflite
SINet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 2.335 ms 1 - 146 MB NPU SINet.dlc
SINet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.584 ms 0 - 2 MB NPU SINet.tflite
SINet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.603 ms 1 - 4 MB NPU SINet.dlc
SINet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.616 ms 0 - 3 MB NPU SINet.onnx.zip
SINet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 2.007 ms 0 - 125 MB NPU SINet.tflite
SINet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 8.327 ms 1 - 126 MB NPU SINet.dlc
SINet float SA7255P ADP Qualcomm® SA7255P TFLITE 3.518 ms 0 - 127 MB NPU SINet.tflite
SINet float SA7255P ADP Qualcomm® SA7255P QNN_DLC 3.505 ms 1 - 125 MB NPU SINet.dlc
SINet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.596 ms 0 - 3 MB NPU SINet.tflite
SINet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.589 ms 1 - 3 MB NPU SINet.dlc
SINet float SA8295P ADP Qualcomm® SA8295P TFLITE 2.43 ms 0 - 136 MB NPU SINet.tflite
SINet float SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.415 ms 0 - 135 MB NPU SINet.dlc
SINet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.59 ms 0 - 3 MB NPU SINet.tflite
SINet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.593 ms 1 - 3 MB NPU SINet.dlc
SINet float SA8775P ADP Qualcomm® SA8775P TFLITE 2.007 ms 0 - 125 MB NPU SINet.tflite
SINet float SA8775P ADP Qualcomm® SA8775P QNN_DLC 8.327 ms 1 - 126 MB NPU SINet.dlc
SINet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 1.048 ms 0 - 146 MB NPU SINet.tflite
SINet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.046 ms 1 - 146 MB NPU SINet.dlc
SINet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.055 ms 0 - 120 MB NPU SINet.onnx.zip
SINet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.773 ms 0 - 130 MB NPU SINet.tflite
SINet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.786 ms 0 - 129 MB NPU SINet.dlc
SINet float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 0.82 ms 0 - 104 MB NPU SINet.onnx.zip
SINet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.639 ms 0 - 129 MB NPU SINet.tflite
SINet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.648 ms 0 - 129 MB NPU SINet.dlc
SINet float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 0.739 ms 0 - 104 MB NPU SINet.onnx.zip
SINet float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.85 ms 1 - 1 MB NPU SINet.dlc
SINet float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.605 ms 2 - 2 MB NPU SINet.onnx.zip
SINet w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 3.497 ms 0 - 127 MB NPU SINet.dlc
SINet w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 2.29 ms 0 - 153 MB NPU SINet.dlc
SINet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.809 ms 0 - 3 MB NPU SINet.dlc
SINet w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 2.162 ms 0 - 127 MB NPU SINet.dlc
SINet w8a16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 3.497 ms 0 - 127 MB NPU SINet.dlc
SINet w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.811 ms 0 - 2 MB NPU SINet.dlc
SINet w8a16 SA8295P ADP Qualcomm® SA8295P QNN_DLC 2.865 ms 0 - 135 MB NPU SINet.dlc
SINet w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.81 ms 0 - 2 MB NPU SINet.dlc
SINet w8a16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 2.162 ms 0 - 127 MB NPU SINet.dlc
SINet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 1.227 ms 0 - 150 MB NPU SINet.dlc
SINet w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.914 ms 0 - 131 MB NPU SINet.dlc
SINet w8a16 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.734 ms 0 - 130 MB NPU SINet.dlc
SINet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 2.033 ms 0 - 0 MB NPU SINet.dlc
SINet w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 TFLITE 14.496 ms 0 - 128 MB NPU SINet.tflite
SINet w8a8 Dragonwing Q-6690 MTP Qualcomm® Qcm6690 ONNX 12.289 ms 7 - 23 MB CPU SINet.onnx.zip
SINet w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 TFLITE 19.842 ms 0 - 11 MB NPU SINet.tflite
SINet w8a8 Dragonwing RB3 Gen 2 Vision Kit Qualcomm® QCS6490 ONNX 31.545 ms 7 - 11 MB CPU SINet.onnx.zip
SINet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 2.483 ms 0 - 125 MB NPU SINet.tflite
SINet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 2.505 ms 0 - 125 MB NPU SINet.dlc
SINet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.383 ms 0 - 142 MB NPU SINet.tflite
SINet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.428 ms 0 - 146 MB NPU SINet.dlc
SINet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.219 ms 0 - 3 MB NPU SINet.tflite
SINet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.291 ms 0 - 2 MB NPU SINet.dlc
SINet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 5.133 ms 5 - 8 MB NPU SINet.onnx.zip
SINet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.53 ms 0 - 125 MB NPU SINet.tflite
SINet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 1.543 ms 0 - 125 MB NPU SINet.dlc
SINet w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 27.937 ms 1 - 7 MB CPU SINet.tflite
SINet w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 10.272 ms 7 - 10 MB CPU SINet.onnx.zip
SINet w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 2.483 ms 0 - 125 MB NPU SINet.tflite
SINet w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 2.505 ms 0 - 125 MB NPU SINet.dlc
SINet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.22 ms 0 - 3 MB NPU SINet.tflite
SINet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.284 ms 0 - 2 MB NPU SINet.dlc
SINet w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 1.876 ms 0 - 133 MB NPU SINet.tflite
SINet w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 1.952 ms 0 - 133 MB NPU SINet.dlc
SINet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.215 ms 0 - 3 MB NPU SINet.tflite
SINet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.276 ms 0 - 2 MB NPU SINet.dlc
SINet w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.53 ms 0 - 125 MB NPU SINet.tflite
SINet w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 1.543 ms 0 - 125 MB NPU SINet.dlc
SINet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.848 ms 0 - 147 MB NPU SINet.tflite
SINet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.875 ms 0 - 146 MB NPU SINet.dlc
SINet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 3.489 ms 0 - 127 MB NPU SINet.onnx.zip
SINet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.633 ms 0 - 129 MB NPU SINet.tflite
SINet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.657 ms 0 - 129 MB NPU SINet.dlc
SINet w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 2.939 ms 0 - 107 MB NPU SINet.onnx.zip
SINet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 7.435 ms 0 - 128 MB NPU SINet.tflite
SINet w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 11.154 ms 7 - 23 MB CPU SINet.onnx.zip
SINet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.564 ms 0 - 129 MB NPU SINet.tflite
SINet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.529 ms 0 - 127 MB NPU SINet.dlc
SINet w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 2.782 ms 0 - 107 MB NPU SINet.onnx.zip
SINet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.499 ms 0 - 0 MB NPU SINet.dlc
SINet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.427 ms 6 - 6 MB NPU SINet.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.sinet.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.sinet.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.sinet.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.sinet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.sinet.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.sinet.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on SINet's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of SINet can be found here.

References

Community

Downloads last month
92
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/SINet