VL caption — < Sep 15 ’25
Collection
Multimodal models
•
5 items
•
Updated
•
1
The Caption3o-XL-2B-Qwen2VL model is a fine-tuned version of Qwen2-VL-2B-Instruct, tailored for Image Captioning and Vision Language Attribution. This variant is designed to generate precise, highly descriptive captions with a focus on defining visual properties, object attributes, and scene details across a wide spectrum of images and aspect ratios.
model type: experimental
General Query: Caption the image precisely.
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
model = Qwen2VLForConditionalGeneration.from_pretrained(
"prithivMLmods/Caption3o-XL-2B-Qwen2VL", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("prithivMLmods/Caption3o-XL-2B-Qwen2VL")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image with detailed attributes and properties."},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)