Image Annotation & Captioning
					Collection
				
Trained based on Flux-generated images and their enhanced prompt captioning and annotations in a simple JSON format.
					• 
				3 items
				• 
				Updated
					
				•
					
					1
Caption-Pro is an advanced image caption and annotation generator optimized for generating detailed, structured JSON outputs. Built upon a powerful vision-language architecture with enhanced OCR and multilingual support, Caption-Pro extracts high-quality captions and annotations from images for seamless integration into your applications.
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# Load the Caption-Pro model with optimized parameters
model = Qwen2VLForConditionalGeneration.from_pretrained(
    "prithivMLmods/Caption-Pro", torch_dtype="auto", device_map="auto"
)
# Recommended acceleration for performance optimization:
# model = Qwen2VLForConditionalGeneration.from_pretrained(
#     "prithivMLmods/Caption-Pro",
#     torch_dtype=torch.bfloat16,
#     attn_implementation="flash_attention_2",
#     device_map="auto",
# )
# Load the default processor for Caption-Pro
processor = AutoProcessor.from_pretrained("prithivMLmods/Caption-Pro")
# Define the input messages with both an image and a text prompt
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": "https://flux-generated.com/sample_image.jpeg",
            },
            {"type": "text", "text": "Provide detailed captions and annotations for this image in JSON format."},
        ],
    }
]
# Prepare the input for inference
text = processor.apply_chat_template(
    messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate the output
generated_ids = model.generate(**inputs, max_new_tokens=256)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Annotation-Ready Training Data
Optical Character Recognition (OCR)
Structured JSON Output
Image & Text Processing
Conversational Annotation Generation
Secure and Efficient Model Weights
Caption-Pro streamlines the process of generating image captions and annotations, making it an ideal solution for applications that require detailed visual content analysis and structured data integration.
Base model
Qwen/Qwen2-VL-2B