|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: google/vit-base-patch16-224-in21k |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- pjura/mahjong_souls_tiles |
|
|
metrics: |
|
|
- accuracy |
|
|
- f1 |
|
|
- recall |
|
|
model-index: |
|
|
- name: mahjong_soul_vision |
|
|
results: |
|
|
- task: |
|
|
name: Image Classification |
|
|
type: image-classification |
|
|
dataset: |
|
|
name: pjura/mahjong_souls_tiles |
|
|
type: imagefolder |
|
|
config: default |
|
|
split: test |
|
|
args: default |
|
|
metrics: |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.9966555183946488 |
|
|
- name: F1 |
|
|
type: f1 |
|
|
value: 0.9966383672069291 |
|
|
- name: Recall |
|
|
type: recall |
|
|
value: 0.9966555183946488 |
|
|
--- |
|
|
|
|
|
|
|
|
# Mahjong Vision Assistant |
|
|
|
|
|
This project uses computer vision and machine learning to provide real-time discard suggestions for the game Mahjong Soul. |
|
|
|
|
|
## Features |
|
|
|
|
|
* **Tile Recognition:** Identifies Mahjong tiles from the Mahjong Soul game window using a fine-tuned Vision Transformer model (`pjura/mahjong_soul_vision`). |
|
|
* **Game State Analysis:** Parses the recognized tiles to understand the current game state (player's hand, melds, discard pools). |
|
|
* **Discard Suggestion:** Employs a neural network (`ImprovedNN`), based on the architecture from the [pjura/mahjong_ai](https://huggingface.co/pjura/mahjong_ai) repository, to predict the optimal discard based on the analyzed game state. |
|
|
* **Live Overlay:** Captures the game window and overlays suggestions directly onto the screen, highlighting the recommended discard tile. |
|
|
|
|
|
 |
|
|
|
|
|
|
|
|
## Project Structure |
|
|
|
|
|
* `live_feed.py`: The main script to run the live assistant. It captures the screen, performs tile recognition, predicts discards, and displays the overlay. |
|
|
* `hf_vision_model.ipynb`: Jupyter notebook detailing the training process for the Hugging Face Vision Transformer used for tile recognition. |
|
|
* `tools.py`: Contains utility functions for data processing, model prediction, loss calculation, MLflow interaction, and tile representation translation used by `live_feed.py`. Many cross repo functions. |
|
|
* `model.safetensors`: Saved weights for the discard prediction neural network (`ImprovedNN`). |
|
|
|
|
|
## Setup |
|
|
|
|
|
1. **Environment:** Ensure you have Python installed along with necessary libraries. Key libraries include: |
|
|
* `torch` (with CUDA support if available) |
|
|
* `transformers` |
|
|
* `datasets` |
|
|
* `evaluate` |
|
|
* `opencv-python` (`cv2`) |
|
|
* `Pillow` (`PIL`) |
|
|
* `pygetwindow` |
|
|
* `numpy` |
|
|
* `pyautogui` |
|
|
* `keyboard` |
|
|
* `safetensors` |
|
|
* `mlflow` (Optional, used in `tools.py`, you can use whatever you like to serve the model) |
|
|
* `scipy` |
|
|
* `matplotlib` |
|
|
|
|
|
*(A `requirements.txt` file would be beneficial here, but didn't made one at the time)* |
|
|
|
|
|
2. **Models:** |
|
|
* The tile recognition model (`pjura/mahjong_soul_vision`) will be downloaded automatically by the `transformers` library. |
|
|
* The discard prediction model (`model.safetensors`) should be present in the root directory. |
|
|
|
|
|
## Usage |
|
|
|
|
|
1. Ensure the Mahjong Soul game window is open and titled "MahjongSoul". |
|
|
2. Run the main script: |
|
|
```bash |
|
|
python live_feed.py |
|
|
``` |
|
|
3. The script will capture the game window, analyze the tiles, and highlight the suggested discard tile in the player's hand region. The color of the highlight indicates the model's confidence (Green=High, Red=Low). |
|
|
4. Press 'q' to quit the application. |
|
|
5. **Auto-Click:** When it is your turn (14 tiles in hand/melds) and a suggestion is highlighted, hold the **Spacebar** to automatically move the mouse and click the suggested tile. If Spacebar is not held, only the highlight will be shown. |
|
|
|
|
|
## Notes |
|
|
|
|
|
* The script relies on specific window coordinates and aspect ratios which might need adjustment depending on screen resolution and game layout. |
|
|
* The discard prediction model architecture (`ImprovedNN`) originates from the [pjura/mahjong_ai](https://huggingface.co/pjura/mahjong_ai) repository. The included `model.safetensors` file is an example set of weights for this model, also from that repository, but potentially not the latest version. It was trained on the `pjura/mahjong_board_states` dataset, primarily using the `tenhou_prediction_deepLearning_basic.ipynb` notebook as detailed on the model card. You can add your own logic to load different weights or the latest version from the Hub. |
|
|
|
|
|
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on a local imagefolder dataset consisting of pictures of Mahjong tiles. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0466 |
|
|
- Accuracy: 0.9967 |
|
|
- F1: 0.9966 |
|
|
- Recall: 0.9967 |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 5e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 4 |
|
|
- total_train_batch_size: 64 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_ratio: 0.1 |
|
|
- num_epochs: 250 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:| |
|
|
| 3.5154 | 1.0 | 17 | 3.5109 | 0.0234 | 0.0154 | 0.0234 | |
|
|
| 3.4741 | 2.0 | 34 | 3.4796 | 0.0769 | 0.0703 | 0.0769 | |
|
|
| 3.3627 | 3.0 | 51 | 3.4305 | 0.1661 | 0.1266 | 0.1661 | |
|
|
| 3.2456 | 4.0 | 68 | 3.3608 | 0.2230 | 0.1652 | 0.2230 | |
|
|
| 3.1598 | 5.0 | 85 | 3.2658 | 0.2676 | 0.1989 | 0.2676 | |
|
|
| 2.9972 | 6.0 | 102 | 3.1531 | 0.3467 | 0.2807 | 0.3467 | |
|
|
| 2.7832 | 7.0 | 119 | 3.0176 | 0.4749 | 0.4135 | 0.4749 | |
|
|
| 2.6689 | 8.0 | 136 | 2.8651 | 0.5507 | 0.4891 | 0.5507 | |
|
|
| 2.3725 | 9.0 | 153 | 2.6983 | 0.6734 | 0.6192 | 0.6734 | |
|
|
| 2.1117 | 10.0 | 170 | 2.5176 | 0.7570 | 0.7124 | 0.7570 | |
|
|
| 1.9014 | 11.0 | 187 | 2.3488 | 0.8105 | 0.7771 | 0.8105 | |
|
|
| 1.6784 | 12.0 | 204 | 2.1735 | 0.8618 | 0.8440 | 0.8618 | |
|
|
| 1.4541 | 13.0 | 221 | 2.0088 | 0.9164 | 0.9092 | 0.9164 | |
|
|
| 1.3576 | 14.0 | 238 | 1.8511 | 0.9487 | 0.9463 | 0.9487 | |
|
|
| 1.2025 | 15.0 | 255 | 1.6971 | 0.9721 | 0.9718 | 0.9721 | |
|
|
| 1.0567 | 16.0 | 272 | 1.5578 | 0.9844 | 0.9842 | 0.9844 | |
|
|
| 0.898 | 17.0 | 289 | 1.4185 | 0.9889 | 0.9887 | 0.9889 | |
|
|
| 0.7663 | 18.0 | 306 | 1.2978 | 0.9900 | 0.9899 | 0.9900 | |
|
|
| 0.7498 | 19.0 | 323 | 1.1911 | 0.9911 | 0.9910 | 0.9911 | |
|
|
| 0.6427 | 20.0 | 340 | 1.0966 | 0.9900 | 0.9899 | 0.9900 | |
|
|
| 0.616 | 21.0 | 357 | 1.0003 | 0.9911 | 0.9910 | 0.9911 | |
|
|
| 0.4962 | 22.0 | 374 | 0.9015 | 0.9900 | 0.9900 | 0.9900 | |
|
|
| 0.4871 | 23.0 | 391 | 0.8413 | 0.9900 | 0.9899 | 0.9900 | |
|
|
| 0.4257 | 24.0 | 408 | 0.7768 | 0.9911 | 0.9910 | 0.9911 | |
|
|
| 0.3961 | 25.0 | 425 | 0.7042 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.3513 | 26.0 | 442 | 0.6645 | 0.9922 | 0.9922 | 0.9922 | |
|
|
| 0.3294 | 27.0 | 459 | 0.6179 | 0.9911 | 0.9911 | 0.9911 | |
|
|
| 0.3021 | 28.0 | 476 | 0.5852 | 0.9900 | 0.9899 | 0.9900 | |
|
|
| 0.2726 | 29.0 | 493 | 0.5444 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.257 | 30.0 | 510 | 0.5177 | 0.9911 | 0.9910 | 0.9911 | |
|
|
| 0.2382 | 31.0 | 527 | 0.4924 | 0.9900 | 0.9899 | 0.9900 | |
|
|
| 0.2222 | 32.0 | 544 | 0.4582 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.2059 | 33.0 | 561 | 0.4408 | 0.9922 | 0.9922 | 0.9922 | |
|
|
| 0.1928 | 34.0 | 578 | 0.4222 | 0.9911 | 0.9910 | 0.9911 | |
|
|
| 0.1864 | 35.0 | 595 | 0.3997 | 0.9922 | 0.9922 | 0.9922 | |
|
|
| 0.176 | 36.0 | 612 | 0.3844 | 0.9922 | 0.9922 | 0.9922 | |
|
|
| 0.1625 | 37.0 | 629 | 0.3693 | 0.9922 | 0.9922 | 0.9922 | |
|
|
| 0.154 | 38.0 | 646 | 0.3539 | 0.9922 | 0.9921 | 0.9922 | |
|
|
| 0.1524 | 39.0 | 663 | 0.3380 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.1415 | 40.0 | 680 | 0.3256 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.1362 | 41.0 | 697 | 0.3147 | 0.9922 | 0.9922 | 0.9922 | |
|
|
| 0.1307 | 42.0 | 714 | 0.3023 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.1263 | 43.0 | 731 | 0.2914 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.1185 | 44.0 | 748 | 0.2811 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.1143 | 45.0 | 765 | 0.2708 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.109 | 46.0 | 782 | 0.2646 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.1023 | 47.0 | 799 | 0.2564 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.1 | 48.0 | 816 | 0.2472 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0969 | 49.0 | 833 | 0.2409 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0931 | 50.0 | 850 | 0.2336 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0926 | 51.0 | 867 | 0.2266 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0874 | 52.0 | 884 | 0.2217 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.0837 | 53.0 | 901 | 0.2134 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0796 | 54.0 | 918 | 0.2099 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.0759 | 55.0 | 935 | 0.2038 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0745 | 56.0 | 952 | 0.1987 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0745 | 57.0 | 969 | 0.1937 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0678 | 58.0 | 986 | 0.1883 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0666 | 59.0 | 1003 | 0.1841 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0642 | 60.0 | 1020 | 0.1805 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0608 | 61.0 | 1037 | 0.1756 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0615 | 62.0 | 1054 | 0.1724 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0582 | 63.0 | 1071 | 0.1689 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0574 | 64.0 | 1088 | 0.1650 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0558 | 65.0 | 1105 | 0.1612 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0551 | 66.0 | 1122 | 0.1581 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.054 | 67.0 | 1139 | 0.1550 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0529 | 68.0 | 1156 | 0.1516 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0508 | 69.0 | 1173 | 0.1491 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0497 | 70.0 | 1190 | 0.1462 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0469 | 71.0 | 1207 | 0.1436 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0478 | 72.0 | 1224 | 0.1417 | 0.9933 | 0.9933 | 0.9933 | |
|
|
| 0.0433 | 73.0 | 1241 | 0.1384 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0406 | 74.0 | 1258 | 0.1359 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0432 | 75.0 | 1275 | 0.1337 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0425 | 76.0 | 1292 | 0.1315 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0393 | 77.0 | 1309 | 0.1297 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0405 | 78.0 | 1326 | 0.1270 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0403 | 79.0 | 1343 | 0.1250 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.037 | 80.0 | 1360 | 0.1233 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0377 | 81.0 | 1377 | 0.1213 | 0.9944 | 0.9944 | 0.9944 | |
|
|
| 0.0336 | 82.0 | 1394 | 0.1195 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0366 | 83.0 | 1411 | 0.1174 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0361 | 84.0 | 1428 | 0.1156 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0351 | 85.0 | 1445 | 0.1140 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0333 | 86.0 | 1462 | 0.1126 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0343 | 87.0 | 1479 | 0.1109 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0316 | 88.0 | 1496 | 0.1096 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0319 | 89.0 | 1513 | 0.1077 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0297 | 90.0 | 1530 | 0.1062 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0285 | 91.0 | 1547 | 0.1050 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0288 | 92.0 | 1564 | 0.1037 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0283 | 93.0 | 1581 | 0.1026 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0282 | 94.0 | 1598 | 0.1011 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0281 | 95.0 | 1615 | 0.1001 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0283 | 96.0 | 1632 | 0.0986 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0274 | 97.0 | 1649 | 0.0976 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0261 | 98.0 | 1666 | 0.0965 | 0.9955 | 0.9955 | 0.9955 | |
|
|
| 0.0249 | 99.0 | 1683 | 0.0955 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0252 | 100.0 | 1700 | 0.0941 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0258 | 101.0 | 1717 | 0.0930 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.024 | 102.0 | 1734 | 0.0921 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0244 | 103.0 | 1751 | 0.0910 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0226 | 104.0 | 1768 | 0.0904 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0238 | 105.0 | 1785 | 0.0890 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0233 | 106.0 | 1802 | 0.0881 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0219 | 107.0 | 1819 | 0.0870 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0213 | 108.0 | 1836 | 0.0863 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0221 | 109.0 | 1853 | 0.0855 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0209 | 110.0 | 1870 | 0.0848 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0207 | 111.0 | 1887 | 0.0838 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0203 | 112.0 | 1904 | 0.0828 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0203 | 113.0 | 1921 | 0.0823 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0193 | 114.0 | 1938 | 0.0814 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0199 | 115.0 | 1955 | 0.0806 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0202 | 116.0 | 1972 | 0.0799 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0192 | 117.0 | 1989 | 0.0790 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0193 | 118.0 | 2006 | 0.0784 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0189 | 119.0 | 2023 | 0.0779 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0189 | 120.0 | 2040 | 0.0772 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0176 | 121.0 | 2057 | 0.0765 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0184 | 122.0 | 2074 | 0.0761 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0169 | 123.0 | 2091 | 0.0754 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0177 | 124.0 | 2108 | 0.0746 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0173 | 125.0 | 2125 | 0.0739 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0173 | 126.0 | 2142 | 0.0737 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.016 | 127.0 | 2159 | 0.0729 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0167 | 128.0 | 2176 | 0.0724 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0164 | 129.0 | 2193 | 0.0714 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0158 | 130.0 | 2210 | 0.0711 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.016 | 131.0 | 2227 | 0.0706 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0159 | 132.0 | 2244 | 0.0701 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0154 | 133.0 | 2261 | 0.0697 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0149 | 134.0 | 2278 | 0.0694 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0149 | 135.0 | 2295 | 0.0685 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0148 | 136.0 | 2312 | 0.0681 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0146 | 137.0 | 2329 | 0.0677 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0147 | 138.0 | 2346 | 0.0671 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0147 | 139.0 | 2363 | 0.0667 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0143 | 140.0 | 2380 | 0.0662 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0137 | 141.0 | 2397 | 0.0660 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0138 | 142.0 | 2414 | 0.0656 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0142 | 143.0 | 2431 | 0.0649 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0137 | 144.0 | 2448 | 0.0645 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0137 | 145.0 | 2465 | 0.0641 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0134 | 146.0 | 2482 | 0.0636 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.014 | 147.0 | 2499 | 0.0632 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0132 | 148.0 | 2516 | 0.0632 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0135 | 149.0 | 2533 | 0.0627 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0128 | 150.0 | 2550 | 0.0624 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0123 | 151.0 | 2567 | 0.0619 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0124 | 152.0 | 2584 | 0.0615 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0127 | 153.0 | 2601 | 0.0609 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0127 | 154.0 | 2618 | 0.0607 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0124 | 155.0 | 2635 | 0.0607 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0121 | 156.0 | 2652 | 0.0601 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0118 | 157.0 | 2669 | 0.0599 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0123 | 158.0 | 2686 | 0.0596 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0118 | 159.0 | 2703 | 0.0590 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0116 | 160.0 | 2720 | 0.0589 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0112 | 161.0 | 2737 | 0.0586 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0113 | 162.0 | 2754 | 0.0582 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0116 | 163.0 | 2771 | 0.0579 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.011 | 164.0 | 2788 | 0.0576 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0114 | 165.0 | 2805 | 0.0575 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0109 | 166.0 | 2822 | 0.0572 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0102 | 167.0 | 2839 | 0.0569 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0106 | 168.0 | 2856 | 0.0568 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0103 | 169.0 | 2873 | 0.0564 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0105 | 170.0 | 2890 | 0.0561 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0106 | 171.0 | 2907 | 0.0560 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.01 | 172.0 | 2924 | 0.0556 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0098 | 173.0 | 2941 | 0.0554 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0098 | 174.0 | 2958 | 0.0550 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0107 | 175.0 | 2975 | 0.0549 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0103 | 176.0 | 2992 | 0.0546 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0104 | 177.0 | 3009 | 0.0544 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0096 | 178.0 | 3026 | 0.0542 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0102 | 179.0 | 3043 | 0.0540 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0097 | 180.0 | 3060 | 0.0538 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0096 | 181.0 | 3077 | 0.0535 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0093 | 182.0 | 3094 | 0.0536 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0097 | 183.0 | 3111 | 0.0531 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0093 | 184.0 | 3128 | 0.0529 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0097 | 185.0 | 3145 | 0.0526 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0094 | 186.0 | 3162 | 0.0527 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0095 | 187.0 | 3179 | 0.0524 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0093 | 188.0 | 3196 | 0.0522 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0089 | 189.0 | 3213 | 0.0520 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0091 | 190.0 | 3230 | 0.0520 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0091 | 191.0 | 3247 | 0.0516 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.009 | 192.0 | 3264 | 0.0515 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.009 | 193.0 | 3281 | 0.0514 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0091 | 194.0 | 3298 | 0.0512 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.009 | 195.0 | 3315 | 0.0509 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0087 | 196.0 | 3332 | 0.0510 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.009 | 197.0 | 3349 | 0.0507 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0087 | 198.0 | 3366 | 0.0506 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0084 | 199.0 | 3383 | 0.0505 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.009 | 200.0 | 3400 | 0.0503 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0087 | 201.0 | 3417 | 0.0501 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0088 | 202.0 | 3434 | 0.0500 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0086 | 203.0 | 3451 | 0.0500 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0085 | 204.0 | 3468 | 0.0497 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.009 | 205.0 | 3485 | 0.0496 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0082 | 206.0 | 3502 | 0.0495 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.008 | 207.0 | 3519 | 0.0494 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0082 | 208.0 | 3536 | 0.0493 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0078 | 209.0 | 3553 | 0.0491 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0082 | 210.0 | 3570 | 0.0490 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0082 | 211.0 | 3587 | 0.0489 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0085 | 212.0 | 3604 | 0.0488 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0087 | 213.0 | 3621 | 0.0487 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0079 | 214.0 | 3638 | 0.0485 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0078 | 215.0 | 3655 | 0.0484 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0078 | 216.0 | 3672 | 0.0484 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0082 | 217.0 | 3689 | 0.0483 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0085 | 218.0 | 3706 | 0.0482 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0079 | 219.0 | 3723 | 0.0480 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0079 | 220.0 | 3740 | 0.0480 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0076 | 221.0 | 3757 | 0.0479 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.008 | 222.0 | 3774 | 0.0478 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0078 | 223.0 | 3791 | 0.0477 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0078 | 224.0 | 3808 | 0.0476 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0078 | 225.0 | 3825 | 0.0476 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0077 | 226.0 | 3842 | 0.0475 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0075 | 227.0 | 3859 | 0.0475 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0075 | 228.0 | 3876 | 0.0474 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0076 | 229.0 | 3893 | 0.0473 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0077 | 230.0 | 3910 | 0.0472 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0076 | 231.0 | 3927 | 0.0472 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0074 | 232.0 | 3944 | 0.0471 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0076 | 233.0 | 3961 | 0.0471 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0074 | 234.0 | 3978 | 0.0470 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0077 | 235.0 | 3995 | 0.0470 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0074 | 236.0 | 4012 | 0.0469 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0075 | 237.0 | 4029 | 0.0469 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0072 | 238.0 | 4046 | 0.0469 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0075 | 239.0 | 4063 | 0.0468 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0078 | 240.0 | 4080 | 0.0468 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0075 | 241.0 | 4097 | 0.0468 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0073 | 242.0 | 4114 | 0.0468 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0073 | 243.0 | 4131 | 0.0467 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0068 | 244.0 | 4148 | 0.0467 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0072 | 245.0 | 4165 | 0.0467 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0073 | 246.0 | 4182 | 0.0467 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0077 | 247.0 | 4199 | 0.0467 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0074 | 248.0 | 4216 | 0.0466 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0073 | 249.0 | 4233 | 0.0466 | 0.9967 | 0.9966 | 0.9967 | |
|
|
| 0.0074 | 250.0 | 4250 | 0.0466 | 0.9967 | 0.9966 | 0.9967 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.34.1 |
|
|
- Pytorch 2.1.0+cu121 |
|
|
- Datasets 2.14.6 |
|
|
- Tokenizers 0.14.1 |