vit-bmr-tuned
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3340
- Accuracy: 0.8889
- Precision: 0.8905
- Recall: 0.8889
- F1: 0.8885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 160 | 0.3340 | 0.8889 | 0.8905 | 0.8889 | 0.8885 |
| No log | 2.0 | 320 | 0.4336 | 0.8765 | 0.8860 | 0.8765 | 0.8764 |
| No log | 3.0 | 480 | 0.4304 | 0.9136 | 0.9194 | 0.9136 | 0.9129 |
| 0.1675 | 4.0 | 640 | 0.6488 | 0.8765 | 0.8907 | 0.8765 | 0.8745 |
| 0.1675 | 5.0 | 800 | 0.5233 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.1675 | 6.0 | 960 | 0.5633 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0141 | 7.0 | 1120 | 0.5923 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0141 | 8.0 | 1280 | 0.6144 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0141 | 9.0 | 1440 | 0.6319 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0016 | 10.0 | 1600 | 0.6455 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0016 | 11.0 | 1760 | 0.6563 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0016 | 12.0 | 1920 | 0.6655 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0011 | 13.0 | 2080 | 0.6731 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0011 | 14.0 | 2240 | 0.6786 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0011 | 15.0 | 2400 | 0.6830 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0009 | 16.0 | 2560 | 0.6863 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0009 | 17.0 | 2720 | 0.6883 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0009 | 18.0 | 2880 | 0.6895 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0008 | 19.0 | 3040 | 0.6899 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
| 0.0008 | 20.0 | 3200 | 0.6900 | 0.9012 | 0.9046 | 0.9012 | 0.9007 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 10
Model tree for pizza883/vit-bmr-tuned
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefolderself-reported0.889
- Precision on imagefolderself-reported0.891
- Recall on imagefolderself-reported0.889
- F1 on imagefolderself-reported0.888