SentenceTransformer
This is a sentence-transformers model trained on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("pankajrajdeo/bond-embed-v1-fp16")
# Run inference
sentences = [
'Light-chain amyloidosis',
'amyloidosis primary systemic',
'partial deletion of the long arm of chromosome X',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
owl_ontology_eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.6303 |
| cosine_accuracy@3 | 0.8148 |
| cosine_accuracy@5 | 0.8775 |
| cosine_accuracy@10 | 0.9268 |
| cosine_precision@1 | 0.6303 |
| cosine_precision@3 | 0.2763 |
| cosine_precision@5 | 0.1798 |
| cosine_precision@10 | 0.0957 |
| cosine_recall@1 | 0.6217 |
| cosine_recall@3 | 0.8081 |
| cosine_recall@5 | 0.8724 |
| cosine_recall@10 | 0.9241 |
| cosine_ndcg@10 | 0.7797 |
| cosine_mrr@10 | 0.7342 |
| cosine_map@100 | 0.7341 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,441,905 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 9.48 tokens
- max: 47 tokens
- min: 3 tokens
- mean: 8.68 tokens
- max: 30 tokens
- Samples:
anchor positive Mangshan horned toadMangshan spadefoot toadLeuconotopicos borealisPicoides borealisCylindrella teneriensisTeneria teneriensis - Loss:
CachedMultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 1024learning_rate: 1.5e-05num_train_epochs: 5lr_scheduler_type: cosinewarmup_ratio: 0.05bf16: Truedataloader_num_workers: 32load_best_model_at_end: Truegradient_checkpointing: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 1024per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1.5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 32dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Truegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | owl_ontology_eval_cosine_ndcg@10 |
|---|---|---|---|
| 0.0717 | 100 | 1.3232 | - |
| 0.1434 | 200 | 1.021 | - |
| 0.2151 | 300 | 0.9633 | - |
| 0.2867 | 400 | 0.9068 | - |
| 0.3297 | 460 | - | 0.7207 |
| 0.3584 | 500 | 0.8723 | - |
| 0.4301 | 600 | 0.852 | - |
| 0.5018 | 700 | 0.8161 | - |
| 0.5735 | 800 | 0.7939 | - |
| 0.6452 | 900 | 0.7935 | - |
| 0.6595 | 920 | - | 0.7364 |
| 0.7168 | 1000 | 0.7646 | - |
| 0.7885 | 1100 | 0.7464 | - |
| 0.8602 | 1200 | 0.7376 | - |
| 0.9319 | 1300 | 0.7313 | - |
| 0.9892 | 1380 | - | 0.7468 |
| 1.0036 | 1400 | 0.7099 | - |
| 1.0753 | 1500 | 0.6884 | - |
| 1.1470 | 1600 | 0.6776 | - |
| 1.2186 | 1700 | 0.6694 | - |
| 1.2903 | 1800 | 0.6641 | - |
| 1.3190 | 1840 | - | 0.7561 |
| 1.3620 | 1900 | 0.6526 | - |
| 1.4337 | 2000 | 0.6524 | - |
| 1.5054 | 2100 | 0.6364 | - |
| 1.5771 | 2200 | 0.6339 | - |
| 1.6487 | 2300 | 0.626 | 0.7614 |
| 1.7204 | 2400 | 0.6197 | - |
| 1.7921 | 2500 | 0.6193 | - |
| 1.8638 | 2600 | 0.6155 | - |
| 1.9355 | 2700 | 0.6142 | - |
| 1.9785 | 2760 | - | 0.7662 |
| 2.0072 | 2800 | 0.5853 | - |
| 2.0789 | 2900 | 0.5824 | - |
| 2.1505 | 3000 | 0.5769 | - |
| 2.2222 | 3100 | 0.5765 | - |
| 2.2939 | 3200 | 0.5608 | - |
| 2.3082 | 3220 | - | 0.7698 |
| 2.3656 | 3300 | 0.5695 | - |
| 2.4373 | 3400 | 0.5641 | - |
| 2.5090 | 3500 | 0.5638 | - |
| 2.5806 | 3600 | 0.554 | - |
| 2.6380 | 3680 | - | 0.7735 |
| 2.6523 | 3700 | 0.5539 | - |
| 2.7240 | 3800 | 0.5495 | - |
| 2.7957 | 3900 | 0.5556 | - |
| 2.8674 | 4000 | 0.5397 | - |
| 2.9391 | 4100 | 0.5447 | - |
| 2.9677 | 4140 | - | 0.7757 |
| 3.0108 | 4200 | 0.5331 | - |
| 3.0824 | 4300 | 0.5336 | - |
| 3.1541 | 4400 | 0.5346 | - |
| 3.2258 | 4500 | 0.5247 | - |
| 3.2975 | 4600 | 0.5241 | 0.7775 |
| 3.3692 | 4700 | 0.5257 | - |
| 3.4409 | 4800 | 0.5241 | - |
| 3.5125 | 4900 | 0.5171 | - |
| 3.5842 | 5000 | 0.5215 | - |
| 3.6272 | 5060 | - | 0.7787 |
| 3.6559 | 5100 | 0.5203 | - |
| 3.7276 | 5200 | 0.5214 | - |
| 3.7993 | 5300 | 0.5266 | - |
| 3.8710 | 5400 | 0.5127 | - |
| 3.9427 | 5500 | 0.5062 | - |
| 3.9570 | 5520 | - | 0.7790 |
| 4.0143 | 5600 | 0.5104 | - |
| 4.0860 | 5700 | 0.5155 | - |
| 4.1577 | 5800 | 0.5042 | - |
| 4.2294 | 5900 | 0.5174 | - |
| 4.2867 | 5980 | - | 0.7797 |
| 4.3011 | 6000 | 0.509 | - |
| 4.3728 | 6100 | 0.5106 | - |
| 4.4444 | 6200 | 0.5076 | - |
| 4.5161 | 6300 | 0.5046 | - |
| 4.5878 | 6400 | 0.5077 | - |
| 4.6165 | 6440 | - | 0.7795 |
| 4.6595 | 6500 | 0.5114 | - |
| 4.7312 | 6600 | 0.5103 | - |
| 4.8029 | 6700 | 0.5106 | - |
| 4.8746 | 6800 | 0.5102 | - |
| 4.9462 | 6900 | 0.5076 | 0.7797 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- -
Evaluation results
- Cosine Accuracy@1 on owl ontology evalself-reported0.630
- Cosine Accuracy@3 on owl ontology evalself-reported0.815
- Cosine Accuracy@5 on owl ontology evalself-reported0.878
- Cosine Accuracy@10 on owl ontology evalself-reported0.927
- Cosine Precision@1 on owl ontology evalself-reported0.630
- Cosine Precision@3 on owl ontology evalself-reported0.276
- Cosine Precision@5 on owl ontology evalself-reported0.180
- Cosine Precision@10 on owl ontology evalself-reported0.096
- Cosine Recall@1 on owl ontology evalself-reported0.622
- Cosine Recall@3 on owl ontology evalself-reported0.808