SentenceTransformer based on FacebookAI/xlm-roberta-base
This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
👉 Check out the model on GitHub.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/xlm-roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset: parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba
- Language: Ukrainian, English
- License: MIT
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("panalexeu/xlm-roberta-ua-distilled")
# Run inference
sentences = [
"You'd better consult the doctor.",
'Краще проконсультуйся у лікаря.',
'Їх позначають як Aufklärungsfahrzeug 93 та Aufklärungsfahrzeug 97 відповідно.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Dataset:
mse-en-ua - Evaluated with
MSEEvaluator
| Metric | Value |
|---|---|
| negative_mse | -1.1089 |
Semantic Similarity
- Datasets:
sts17-en-en,sts17-en-uaandsts17-ua-ua - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts17-en-en | sts17-en-ua | sts17-ua-ua |
|---|---|---|---|
| pearson_cosine | 0.6785 | 0.5926 | 0.6159 |
| spearman_cosine | 0.7308 | 0.6198 | 0.6446 |
Training Details
Training Dataset
- Dataset: parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba
- Size: 523,982 training samples
- Columns:
english,non_english, andlabel - Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 5 tokens
- mean: 21.11 tokens
- max: 254 tokens
- min: 4 tokens
- mean: 23.15 tokens
- max: 293 tokens
- size: 768 elements
- Samples:
english non_english label Her real name is Lydia (リディア, Ridia), but she was mistaken for a boy and called Ricard.Справжнє ім'я — Лідія, але її помилково сприйняли за хлопчика і назвали Рікард.[0.15217968821525574, -0.17830222845077515, -0.12677159905433655, 0.22082313895225525, 0.40085524320602417, ...](Applause) So he didn't just learn water.(Аплодисменти) Він не тільки вивчив слово "вода".[-0.1058148592710495, -0.08846072107553482, -0.2684604823589325, -0.105219267308712, 0.3050258755683899, ...]It is tightly integrated with SAM, the Storage and Archive Manager, and hence is often referred to as SAM-QFS.Вона тісно інтегрована з SAM (Storage and Archive Manager), тому часто називається SAM-QFS.[0.03270340710878372, -0.45798248052597046, -0.20090211927890778, 0.006579531356692314, -0.03178019821643829, ...] - Loss:
MSELoss
Evaluation Dataset
- Dataset: parallel-sentences-talks, parallel-sentences-wikimatrix, parallel-sentences-tatoeba
- Size: 3,838 evaluation samples
- Columns:
english,non_english, andlabel - Approximate statistics based on the first 1000 samples:
english non_english label type string string list details - min: 5 tokens
- mean: 15.64 tokens
- max: 143 tokens
- min: 5 tokens
- mean: 16.98 tokens
- max: 148 tokens
- size: 768 elements
- Samples:
english non_english label I have lost my wallet.Я загубив гаманець.[-0.11186987161636353, -0.03419225662946701, -0.31304317712783813, 0.0838347002863884, 0.108644500374794, ...]It's a pharmaceutical product.Це фармацевтичний продукт.[0.04133488982915878, -0.4182000756263733, -0.30786487460136414, -0.09351564198732376, -0.023946482688188553, ...]We've all heard of the Casual Friday thing.Всі ми чули про «джинсову п’ятницю» (вільна форма одягу).[-0.10697802156209946, 0.21002227067947388, -0.2513434886932373, -0.3718843460083008, 0.06871984899044037, ...] - Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16gradient_accumulation_steps: 3num_train_epochs: 4warmup_ratio: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 3eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | mse-en-ua_negative_mse | sts17-en-en_spearman_cosine | sts17-en-ua_spearman_cosine | sts17-ua-ua_spearman_cosine |
|---|---|---|---|---|---|---|---|
| 0.0938 | 1024 | 0.3281 | 0.0297 | -2.9592 | 0.2325 | 0.1547 | 0.2265 |
| 0.1876 | 2048 | 0.1136 | 0.2042 | -21.6693 | 0.0553 | 0.0429 | 0.2442 |
| 0.2814 | 3072 | 0.1008 | 0.0273 | -2.7461 | 0.2666 | 0.0758 | 0.2613 |
| 0.3752 | 4096 | 0.0843 | 0.0243 | -2.4623 | 0.2541 | 0.0012 | 0.3680 |
| 0.4690 | 5120 | 0.0756 | 0.0216 | -2.2095 | 0.3933 | 0.2535 | 0.4342 |
| 0.5628 | 6144 | 0.0661 | 0.0187 | -1.9539 | 0.5739 | 0.4222 | 0.5056 |
| 0.6566 | 7168 | 0.0579 | 0.0164 | -1.7513 | 0.6184 | 0.4897 | 0.5826 |
| 0.7504 | 8192 | 0.0526 | 0.0153 | -1.6546 | 0.6219 | 0.4568 | 0.5842 |
| 0.8442 | 9216 | 0.0488 | 0.0142 | -1.5525 | 0.6160 | 0.5012 | 0.5884 |
| 0.9380 | 10240 | 0.046 | 0.0135 | -1.4957 | 0.6361 | 0.5046 | 0.5969 |
| 1.0318 | 11264 | 0.0437 | 0.0130 | -1.4506 | 0.6453 | 0.5093 | 0.5939 |
| 1.1256 | 12288 | 0.0419 | 0.0125 | -1.4049 | 0.6403 | 0.5054 | 0.6020 |
| 1.2194 | 13312 | 0.0404 | 0.0122 | -1.3794 | 0.6654 | 0.5442 | 0.6182 |
| 1.3132 | 14336 | 0.0394 | 0.0118 | -1.3434 | 0.6800 | 0.5790 | 0.6291 |
| 1.4070 | 15360 | 0.0383 | 0.0115 | -1.3184 | 0.6836 | 0.5805 | 0.6301 |
| 1.5008 | 16384 | 0.0375 | 0.0114 | -1.3067 | 0.6742 | 0.5555 | 0.6055 |
| 1.5946 | 17408 | 0.0368 | 0.0111 | -1.2864 | 0.6909 | 0.5765 | 0.6256 |
| 1.6884 | 18432 | 0.036 | 0.0109 | -1.2633 | 0.6875 | 0.5801 | 0.6178 |
| 1.7822 | 19456 | 0.0353 | 0.0107 | -1.2490 | 0.7060 | 0.5959 | 0.6322 |
| 1.8760 | 20480 | 0.035 | 0.0106 | -1.2357 | 0.7127 | 0.6047 | 0.6389 |
| 1.9698 | 21504 | 0.0344 | 0.0105 | -1.2265 | 0.7265 | 0.6233 | 0.6459 |
| 2.0636 | 22528 | 0.0335 | 0.0103 | -1.2108 | 0.7184 | 0.6151 | 0.6438 |
| 2.1574 | 23552 | 0.0327 | 0.0103 | -1.2101 | 0.7122 | 0.6074 | 0.6427 |
| 2.2512 | 24576 | 0.0324 | 0.0102 | -1.1972 | 0.7232 | 0.6174 | 0.6447 |
| 2.3450 | 25600 | 0.0322 | 0.0100 | -1.1813 | 0.7217 | 0.6166 | 0.6457 |
| 2.4388 | 26624 | 0.032 | 0.0099 | -1.1745 | 0.7308 | 0.6272 | 0.6534 |
| 2.5326 | 27648 | 0.0316 | 0.0098 | -1.1673 | 0.7289 | 0.6125 | 0.6441 |
| 2.6264 | 28672 | 0.0314 | 0.0098 | -1.1622 | 0.7222 | 0.6105 | 0.6365 |
| 2.7202 | 29696 | 0.0312 | 0.0097 | -1.1593 | 0.7175 | 0.6121 | 0.6348 |
| 2.8140 | 30720 | 0.0308 | 0.0096 | -1.1457 | 0.7204 | 0.6044 | 0.6377 |
| 2.9078 | 31744 | 0.0307 | 0.0095 | -1.1411 | 0.7230 | 0.6175 | 0.6353 |
| 3.0016 | 32768 | 0.0305 | 0.0095 | -1.1414 | 0.7130 | 0.6052 | 0.6340 |
| 3.0954 | 33792 | 0.0296 | 0.0095 | -1.1360 | 0.7234 | 0.6160 | 0.6411 |
| 3.1892 | 34816 | 0.0295 | 0.0094 | -1.1317 | 0.7220 | 0.6131 | 0.6396 |
| 3.2830 | 35840 | 0.0294 | 0.0094 | -1.1306 | 0.7315 | 0.6167 | 0.6505 |
| 3.3768 | 36864 | 0.0293 | 0.0094 | -1.1263 | 0.7219 | 0.6089 | 0.6450 |
| 3.4706 | 37888 | 0.0292 | 0.0093 | -1.1225 | 0.7236 | 0.6141 | 0.6451 |
| 3.5644 | 38912 | 0.0291 | 0.0093 | -1.1204 | 0.7331 | 0.6179 | 0.6460 |
| 3.6582 | 39936 | 0.029 | 0.0092 | -1.1147 | 0.7226 | 0.6127 | 0.6406 |
| 3.7520 | 40960 | 0.029 | 0.0092 | -1.1118 | 0.7245 | 0.6184 | 0.6425 |
| 3.8458 | 41984 | 0.0289 | 0.0092 | -1.1102 | 0.7279 | 0.6179 | 0.6465 |
| 3.9396 | 43008 | 0.0288 | 0.0092 | -1.1099 | 0.7298 | 0.6191 | 0.6438 |
| 3.9997 | 43664 | - | 0.0092 | -1.1089 | 0.7308 | 0.6198 | 0.6446 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 35
Model tree for panalexeu/xlm-roberta-ua-distilled
Base model
FacebookAI/xlm-roberta-baseDatasets used to train panalexeu/xlm-roberta-ua-distilled
Space using panalexeu/xlm-roberta-ua-distilled 1
Evaluation results
- Negative Mse on mse en uaself-reported-1.109
- Pearson Cosine on sts17 en enself-reported0.678
- Spearman Cosine on sts17 en enself-reported0.731
- Pearson Cosine on sts17 en uaself-reported0.593
- Spearman Cosine on sts17 en uaself-reported0.620
- Pearson Cosine on sts17 ua uaself-reported0.616
- Spearman Cosine on sts17 ua uaself-reported0.645