|
|
--- |
|
|
license: apache-2.0 |
|
|
language: |
|
|
- en |
|
|
--- |
|
|
|
|
|
-------------------------------------------------------------------------------------------------- |
|
|
|
|
|
<body> |
|
|
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;">β</span> |
|
|
<br> |
|
|
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">ββββTask: Named Entity Recognition</span> |
|
|
<br> |
|
|
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">ββββModel: BERT</span> |
|
|
<br> |
|
|
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">ββββLang: EN</span> |
|
|
<br> |
|
|
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">ββ</span> |
|
|
<br> |
|
|
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;">β</span> |
|
|
</body> |
|
|
|
|
|
-------------------------------------------------------------------------------------------------- |
|
|
|
|
|
<h3>Model description</h3> |
|
|
|
|
|
This is a <b>BERT</b> <b>[1]</b> cased model for the <b>English</b> language, fine-tuned for <b>Named Entity Recognition</b> (<b>Person</b>, <b>Location</b>, <b>Organization</b> and <b>Miscellanea</b> classes) on the [WikiNER](https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) dataset <b>[2]</b>, using Google's <b>bert-base-cased</b> as a pre-trained model. |
|
|
|
|
|
<h3>Training and Performances</h3> |
|
|
|
|
|
The model is trained to perform entity recognition over 4 classes: <b>PER</b> (persons), <b>LOC</b> (locations), <b>ORG</b> (organizations), <b>MISC</b> (miscellanea, mainly events, products and services). It has been fine-tuned for Named Entity Recognition, using the WikiNER English dataset. |
|
|
The model has been trained for 1 epoch with a constant learning rate of 1e-5. |
|
|
|
|
|
|
|
|
<h3>References</h3> |
|
|
|
|
|
[1] https://arxiv.org/abs/1810.04805 |
|
|
|
|
|
[2] https://www.sciencedirect.com/science/article/pii/S0004370212000276 |
|
|
|
|
|
|
|
|
<h3>Limitations</h3> |
|
|
|
|
|
This model is mainly trained on Wikipedia, so it's particularly suitable for natively digital text from the world wide web, written in a correct and fluent form (like wikis, web pages, news, etc.). However, it may show limitations when it comes to chaotic text, containing errors and slang expressions |
|
|
(like social media posts) or when it comes to domain-specific text (like medical, financial or legal content). |
|
|
|
|
|
|
|
|
<h3>License</h3> |
|
|
|
|
|
The model is released under <b>Apache-2.0</b> license |
|
|
|
|
|
|