AI & ML interests

None defined yet.

Recent Activity

ContemplatorFRC  updated a Space 13 days ago
ECNU/README
fukushimaaviv  updated a Space 4 months ago
ECNU/README
View all activity

Nymbo 
posted an update 5 days ago
view post
Post
4472
🚀 I've just shipped a major update to the Nymbo/Tools MCP server: the Agent_Terminal, a single "master tool" that cuts token usage by over 90%!

Anthropic found 98.7% context savings using code execution with MCP, Cloudflare published similar findings. This is my open-source implementation of the same idea.

# The Problem

Traditional MCP exposes every tool definition directly to the model. With 12 tools, that's thousands of tokens consumed *before the conversation even starts*. Each tool call also passes intermediate results through the context window — a 10,000-row spreadsheet? That's all going into context just to sum a column.

# The Solution: One Tool to Rule Them All

Agent_Terminal wraps all 12 tools (Web_Search, Web_Fetch, File_System, Generate_Image, Generate_Speech, Generate_Video, Deep_Research, Memory_Manager, Obsidian_Vault, Shell_Command, Code_Interpreter) into a single Python code execution gateway.

Instead of the model making individual tool calls, it writes Python code that orchestrates the tools directly:

# Search for Bitcoin price
result = Web_Search("current price of bitcoin", max_results=3)
print(result)


Don't know what tools are available? The agent can discover them at runtime:

print(search_tools('image'))  # Find tools by keyword
print(usage('Generate_Image'))  # Get full docs for a specific tool


The individual direct tool calls are all still there, but they can be disabled if using the Agent_Terminal. Try it now - https://www.nymbo.net/nymbot
  • 1 reply
·
ContemplatorFRC 
updated a Space 13 days ago
Nymbo 
posted an update 28 days ago
view post
Post
797
I've added an 11th tool to the Nymbo/Tools MCP server, it's for your Obsidian_Vault. I'd argue it's far more context-efficient than any other Obsidian MCP I've seen, and doesn't require any plugins. Also some big improvements to the Web_Search and Web_Fetch tools.

# Obsidian_Vault Tool

It's basically a read-only version of the File_System tool, but it works so well for navigating Obsidian without unnecessary context. It supports recursive (full-text) search across the entire vault, and supports offset so the agent can "scroll" through a document without re-consuming tokens.

Run the server locally and set the OBSIDIAN_VAULT_ROOT environment variable to your vault's root path. If you don't use Obsidian, this is perfectly usable as simply a read-only filesystem.

# Web_Search Improvements

The Web_Search tool previously just used DuckDuckGo as a backend search engine, but now it also supports Bing, Brave, Yahoo, and Wikipedia. Default engine is auto which provides results from all backends in recommended order. Still doesn't require any kind of API or auth for Web_Search.

There's also a new date filter to limit results to those created in the past day, week, month, or year. Oh, and uhh, SafeSearch is now off by default :)

# Web_Fetch Improvements

As context-efficient as the Markdown mode is for web browsing, sometimes it does lose important context in the conversion from HTML to Markdown. So I've added a new HTML mode to the Web_Fetch tool that basically executes a cURL request on the URL, returning the full HTML page if necessary.

# A Note on Claude Skills

I've been having fun with the new File_System and Shell_Command tools. Using Claude Skills doesn't currently work in the public HF space because of environment restrictions, but using Skills works perfectly well running locally.

Happy building ~
Nymbo 
posted an update about 1 month ago
view post
Post
1956
Two new tools added to the Nymbo/Tools MCP server, File_System and Shell_Exec. You can theoretically do basically anything with these two tools, and it should enable support for many Claude Skills.

GPT-5-Codex proves that for many cases, shell commands really are all you need, and Claude Skills seem to lean into this. The thing is, nothing about the design of Claude Skills actually restricts them to proprietary models!

# File_System

There's a new directory inside the repo called Filesystem, that's the agent's "root". It can perform the following actions : list, read, write, append, mkdir, move, copy, delete, info, help. It's able to keep this all within the scope of one tool call by making the Action field required and all other fields optional. Using a filesystem shouldn't require 15 different tools.

Files created in the public HF space live in the space's running container, and gets cleared when the space is restarted. When running the server locally, files are actually stored on disk.

# Shell_Exec

What good is a filesystem if you can't execute commands in that filesystem? This tool automatically detects if the server is running on Windows or Linux, and suggests using the appropriate shell (PowerShell/Bash). Both of these new tools require that the agent uses relative paths, rather than absolute paths. I could be convinced to back pedal on this.

# Closing Thoughts

The File_System and Shell_Exec tools aren't super polished yet, I'll continue to improve the agent's instructions and UX of using the new tools. Most of my testing was done with gpt-oss-20b and if it messes up, it gets the gist after one failed tool call. It should work perfectly fine for the GPU poor.
  • 1 reply
·
Nymbo 
posted an update about 2 months ago
view post
Post
1829
I've made some improvements to my custom Deep_Research tool in the Nymbo/Tools MCP server. I've added a second LLM process and it still takes less than 1 minute to complete!

The original version of my Deep_Research tool would basically dump up to 50 fetched webpages onto the Researcher model (Qwen3-235B), with only a little bit of context shown from each page.

# New "Filterer" Process

The new process includes another LLM call before the researcher process. The Filterer (also Qwen3-235B) gets the query summary and the original 50 pages with low context, and decides which pages are most relevant to the research topic. The Filterer then outputs the URLs to the relevant pages, which are then re-fetched (with more context) and sent to the Researcher.

# Researcher Context

The Researcher now gets only the relevant webpages, then begins writing the report. When testing with 50 initial results, the researcher would often end up with 10-20 results of relevant context.

It still takes less than a minute to accomplish everything, thanks entirely to Cerebras inference. It now takes about 35-45 seconds to complete once the tool is run.

It's also worth noting that both the Filterer and Researcher now are provided the current time/date before they see the content, reducing hallucinations caused by knowledge cutoffs.
Sri-Vigneshwar-DJ 
posted an update about 2 months ago
view post
Post
320
Do you think domain-specific embedding fine-tuners are needed?
I've been working with embeddings for marketing use cases and noticed something: most embeddings don't get marketing concepts very well. They're trained in general-purpose ways.
The Issue I'm Seeing
When I search marketing content with general embeddings:

"organic growth" returns farming articles
"conversion funnel" matches industrial equipment
"brand lift" doesn't connect to campaign effectiveness
Marketing jargon like CAC, ROAS, CTR aren't properly understood

My Question
Do you think domain-specific embeddings are needed for marketing?
Some thoughts:

Marketing has its own vocabulary and concept relationships
General models trained on Wikipedia/web crawl miss these nuances
But is fine-tuning worth the effort vs just using more retrieval tricks?

Quick Example
I fine-tuned all-mpnet-base-v2 on ~1000 marketing concept pairs and saw 15-20% better retrieval accuracy. But I'm curious:

Has anyone else tried this for marketing or other domains?
When do you think domain-specific embeddings are actually necessary vs overkill?
Are there better approaches I'm missing?

https://huggingface.co/blog/Sri-Vigneshwar-DJ/why-your-marketing-rag-system-needs-domain-specifi
  • 6 replies
·
Nymbo 
posted an update about 2 months ago
view post
Post
669
I have a few Sora-2 invites - 15509N
  • 1 reply
·
Sri-Vigneshwar-DJ 
posted an update about 2 months ago
view post
Post
4423
🚀 Exciting News! We've released a Performance Marketing Expert Dataset from Hawky.ai [www.hawky.ai] Hawky-ai


This dataset empowers AI models with cutting-edge strategies for Meta, Google Ads, and TikTok campaigns. It includes:
1. Multi-platform strategies for e-commerce, DTC, B2B, and more
2. Creative optimization and audience targeting insights
3. ROI-driven recommendations based on 2025 best practices

Sri-Vigneshwar-DJ/Performance-Marketing-Data
Sri-Vigneshwar-DJ 
posted an update 2 months ago
view post
Post
3329
🚀 Qwen3-Omni for Marketing: A Game-Changer

Just wanted to share something exciting I've been exploring—Qwen3-Omni and how it's transforming marketing workflows.

What makes it special? At Hawky.ai we are started experimenting with Qwen3 recently for Analysis and Optimization.

Unlike traditional tools that look at text, images, or audio separately, Qwen3-Omni analyzes everything together. It handles 119 languages, processes 40-minute audio sequences, and understands both images and videos—all at once.

The cool part? It's 2-3x faster than similar models thanks to its MoE architecture.

Real applications I'm seeing:
Ad Analysis: It scores video ads by combining visual elements, audio tone, and text—giving 25% better CTR predictions than single-mode tools.
Campaign Localization: Drop in one ad, get 10 localized versions with native voiceovers in under a minute. Perfect for testing across markets.

Market Research: Feed it competitor content, podcasts, or UGC videos. It extracts actionable insights like "3-second hooks boost retention by 15%" and saves about 70% of analysis time.

Quality Checks: Automatically catches lip-sync errors and audio-visual mismatches.

Full technical breakdown: https://huggingface.co/blog/Sri-Vigneshwar-DJ/hawky-aiqwen3-omni-advanced-architecture-and-marke

Has anyone else been experimenting with multimodal models for marketing? Would love to hear what you're building!

#MultimodalAI #MarTech #OpenSource
Nymbo 
posted an update 2 months ago
view post
Post
1095
There's now a custom Deep_Research tool in my Nymbo/Tools MCP server! TL;DR: The agent using the tools writes a summary of your requests and up to five DuckDuckGo searches (up to 50 results). Each of the webpages found in the searches are then fetched and given to our researcher (Qwen3-235B-A22B-Thinking-2507). The researcher sees the summary, searched queries, and fetched links, then writes a thorough research report. The agent using the tool provides the user with a summary of the report and a link to download research_report.txt. The researcher's instructions are similar to some leaked Perplexity sys prompts.

# Deep_Research Tool

It accomplishes everything in under a minute so it doesn't hit MCP's 60 second timeout, mostly thanks to Cerebras. The only thing required to make this work is a HF_READ_TOKEN for inference.

The Deep_Research tool could certainly be improved. It still needs some sort of mechanism for sorting URLs based on importance (I've got some ideas but I don't want it to be the responsibility of the agent using the tool). I'll probably add a second researcher to filter out the bad sources before inferencing the big researcher. I'm hellbent on keeping this all within the scope of one tool call.

# More Fetch/Web Search Improvements

The Search_DuckDuckGo tool has been further enhanced. It now allows the agent to browse through all pages of results. The results also now include published date (if detected). It also now supports every DDG search types! Default DDG search is called text, but it can also now search by news, images, videos, and books.

The Fetch_Webpage tool now specifies how much of the page has been truncated, and cursor index, allowing it to pickup where it left off without re-consuming tokens. The model can now also choose to strip CSS selectors to remove excess noise, and there's a new URL Scraper mode that only returns URLs found on the full page.

More to come soon ~
Nymbo 
posted an update 3 months ago
view post
Post
1049
I have a few updates to my MCP server I wanna share: New Memory tool, improvements to web search & speech generation.

# Memory_Manager Tool

We now have a Memory_Manager tool. Ask ChatGPT to write all its memories verbatim, then tell gpt-oss-20b to save each one using the tool, then take them anywhere! It stores memories in a memories.json file in the repo, no external database required.

The Memory_Manager tool is currently hidden from the HF space because it's intended for local use. It's enabled by providing a HF_READ_TOKEN in the env secrets, although it doesn't actually use the key for anything. There's probably a cleaner way of ensuring memory is only used locally, I'll come back to this.

# Fetch & Websearch

The Fetch_Webpage tool has been simplified a lot. It now converts the page to Markdown and returns the page with three length settings (Brief, Standard, Full). This is a lot more reliable than the old custom extraction method.

The Search_DuckDuckGo tool has a few small improvements. The input is easier for small models to get right, and the output is more readable.

# Speech Generation

I've added the remaining voices for Kokoro-82M, it now supports all 54 voices with all accents/languages.

I also removed the 30 second cap by making sure it computes all chunks in sequence, not just the first. I've tested it on outputs that are ~10 minutes long. Do note that when used as an MCP server, the tool will timeout after 1 minute, nothing I can do about that for right now.

# Other Thoughts

Lots of MCP use cases involve manipulating media (image editing, ASR, etc.). I've avoided adding tools like this so far for two reasons:

1. Most of these solutions would require assigning it a ZeroGPU slot.
2. The current process of uploading files like images to a Gradio space is still a bit rough. It's doable but requires additional tools.

Both of these points make it a bit painful for local usage. I'm open to suggestions for other tools that rely on text.
Nymbo 
posted an update 3 months ago
view post
Post
1027
I built a general use MCP space ~ Fetch webpages, DuckDuckGo search, Python code execution, Kokoro TTS, Image Gen, Video Gen.

# Tools

1. Fetch webpage
2. Web search via DuckDuckGo (very concise, low excess context)
3. Python code executor
4. Kokoro-82M speech generation
5. Image Generation (use any model from HF Inference Providers)
6. Video Generation (use any model from HF Inference Providers)

The first four tools can be used without any API keys whatsoever. DDG search is free and the code execution and speech gen is done on CPU. Having a HF_READ_TOKEN in the env variables will show all tools. If there isn't a key present, The Image/Video Gen tools are hidden.

Nymbo/Tools
  • 1 reply
·
Nymbo 
posted an update 4 months ago
view post
Post
1045
Anyone using Jan-v1-4B for local MCP-based web search, I highly recommend you try out Intelligent-Internet/II-Search-4B

Very impressed with this lil guy and it deserves more downloads. It's based on the original version of Qwen3-4B but find that it questions reality way less often. Jan-v1 seems to think that everything it sees is synthetic data and constantly gaslights me
fukushimaaviv 
updated a Space 4 months ago
Nymbo 
posted an update 5 months ago
view post
Post
2877
Anyone know how to reset Claude web's MCP config? I connected mine when the HF MCP first released with just the default example spaces added. I added lots of other MCP spaces but Claude.ai doesn't update the available tools... "Disconnecting" the HF integration does nothing, deleting it and adding it again does nothing.

Refreshing tools works fine in VS Code because I can manually restart it in mcp.json, but claude.ai has no such option. Anyone got any ideas?
·