sysbreak-neon-wire-lora

LoRA adapter for SYSBREAK news generation (Qwen2.5-3B-Instruct base)

Model Details

  • Base Model: Qwen/Qwen2.5-3B-Instruct
  • Fine-tuning Method: LoRA (Low-Rank Adaptation)
  • Model Type: Causal Language Model
  • Language: English
  • License: Apache 2.0
  • Use Case: NEON-WIRE content generation for SYSBREAK cyberpunk game

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen2.5-3B-Instruct",
    device_map="auto",
    torch_dtype="auto"
)

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "nullvektordom/sysbreak-neon-wire-lora")
tokenizer = AutoTokenizer.from_pretrained("nullvektordom/sysbreak-neon-wire-lora")

# Generate
prompt = "Generate cyberpunk content"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Project

Part of SYSBREAK - A cyberpunk terminal-based game.

Downloads last month
27
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nullvektordom/sysbreak-neon-wire-lora

Base model

Qwen/Qwen2.5-3B
Adapter
(575)
this model