VESM: Co-distillation of ESM models for Variant Effect Prediction

This repository contains the VESM protein language models developed in the paper "VESM: Compressing the collective knowledge of ESM into a single protein language model" by Tuan Dinh, Seon-Kyeong Jang, Noah Zaitlen and Vasilis Ntranos.


Quick start

A simple way to get started is to run our notebook directly on a Google Colab instance: Getting Started with VESM

See also https://github.com/ntranoslab/vesm

Download models

Using python

from huggingface_hub import snapshot_download, hf_hub_download

local_dir = './vesm'

# Download each model
model_offset = 0
model_name = ["VESM_35M", "VESM_150M", "VESM_650M", "VESM_3B", "VESM3"][model_offset]
hf_hub_download(repo_id="ntranoslab/vesm", filename=f"{model_name}.pth", local_dir=local_dir)

# Download all models
snapshot_download(repo_id="ntranoslab/vesm", local_dir=local_dir)

Using huggingface CLI

huggingface-cli download ntranoslab/vesm --local-dir local_dir

Usage

We provide a simple usage of our models for predicting variant effects.

Loading helpers

import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, EsmForMaskedLM

esm_dict = {
    "VESM_35M": 'facebook/esm2_t12_35M_UR50D',
    "VESM_150M": 'facebook/esm2_t30_150M_UR50D', 
    "VESM_650M": 'facebook/esm2_t33_650M_UR50D', 
    "VESM_3B": 'facebook/esm2_t36_3B_UR50D', 
    "VESM3": "esm3_sm_open_v1"
}
def load_vesm(model_name="VESM_3B", local_dir="vesm", device='cuda'):
    if model_name in esm_dict:
        ckt = esm_dict[model_name]
    else:
        print("Model not found")
        return None

    # download weights
    hf_hub_download(repo_id="ntranoslab/vesm", filename=f"{model_name}.pth", local_dir=local_dir)
    # load base model
    if model_name == "VESM3":
      from esm.models.esm3 import ESM3
      model = ESM3.from_pretrained(ckt, device=device).to(torch.float)
      tokenizer = model.tokenizers.sequence
    else:
      model = EsmForMaskedLM.from_pretrained(ckt).to(device)
      tokenizer = AutoTokenizer.from_pretrained(ckt)
    # load pretrained VESM
    model.load_state_dict(torch.load(f'{local_dir}/{model_name}.pth'), strict=False)
    return model, tokenizer

Variant Effect Prediction

# scoring functions
import torch.nn.functional as F
# calculate log-likelihood ratio from the logits 
def get_llrs(sequence_logits, input_ids):
    token_probs = torch.log_softmax(sequence_logits, dim=-1)
    wt_positions = F.one_hot(input_ids, num_classes=token_probs.shape[-1])
    wt_probs = token_probs * wt_positions
    wt_probs = wt_probs.sum(dim=-1, keepdim=True)
    # add alpha 
    llrs = token_probs - wt_probs.expand(token_probs.shape)
    return llrs

# compute mutation score
def score_mutation(llrs, mutation, sequence_vocabs):
    mutation_score = 0
    for mut in mutation.split(":"):
        _, idx, mt = mut[0], int(mut[1:-1]), mut[-1]
        pred = llrs[idx, sequence_vocabs[mt]] 
        mutation_score += pred.item()
    return mutation_score

Sequence-only Models

Here, we provide sample scripts to compute mutation scores.

# sequence and mutation
sequence = "MVNSTHRGMHTSLHLWNRSSYRLHSNASESLGKGYSDGGCYEQLFVSPEVFVTLGVISLLENILV"
mutation = "M1Y:V2T"
# Setting
local_dir = 'vesm'
gpu_id = 0
device = torch.device(f'cuda:{gpu_id}') if torch.cuda.is_available() else 'cpu'

# Helper
def inference(model, tokenizer, sequence, device):
    tokens = tokenizer([sequence], return_tensors='pt').to(device)
    with torch.no_grad():
        outputs = model(**tokens)
    logits = outputs['logits'][0]
    input_ids = tokens['input_ids'][0]
    # calculate log-likelihood ratio from the logits 
    llrs = get_llrs(logits, input_ids)
    return llrs

# Prediction with VESM
model_name = 'VESM_3B'
model, tokenizer = load_vesm(model_name, local_dir=local_dir, device=device)
sequence_vocabs = tokenizer.get_vocab()
# compute mutation score
llrs = inference(model, tokenizer, sequence, device)
mutation_score = score_mutation(llrs, mutation, sequence_vocabs)
print(f"Predicted score by {model_name}: ", mutation_score)

Using Structure with VESM3

from esm.sdk.api import ESMProtein

# A sample structure pdb: download the latest version
# !wget https://alphafold.ebi.ac.uk/files/AF-P32245-F1-model_v6.pdb
pdb_file = "AF-P32245-F1-model_v6.pdb"
protein = ESMProtein.from_pdb(pdb_file)
mutation = "M1Y:V2T"
# load model
model, tokenizer = load_vesm('VESM3', local_dir=local_dir, device=device)
sequence_vocabs = tokenizer.get_vocab()

# inference
tokens = model.encode(protein)
seq_tokens = tokens.sequence.reshape(1,-1)
struct_tokens = tokens.structure.reshape(1,-1)
with torch.no_grad():
  outs = model.forward(sequence_tokens=seq_tokens, structure_tokens=struct_tokens)
  logits = outs.sequence_logits[0, :, :]
  input_ids = tokens.sequence

# calculate log-likelihood ratio from the logits 
llrs = get_llrs(logits, input_ids)
# compute mutation score
mutation_score = score_mutation(llrs, mutation, sequence_vocabs)
print("mutation score: ", mutation_score)

License

The source code and model weights for VESM models are distributed under the MIT License. The VESM3 model is a fine-tuned version of ESM3-Open (EvolutionaryScale) and is available under a non-commercial license agreement.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Space using ntranoslab/vesm 1