ID-Classifier-ViT

This model is a fine-tuned version of google/vit-base-patch16-224 on the ID_CLASSIFIER_DATA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6108
  • Accuracy: 0.6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 3 0.3000 1.0
No log 2.0 6 0.2664 1.0
No log 3.0 9 0.2472 1.0
No log 4.0 12 0.2270 1.0
No log 5.0 15 0.2102 1.0
No log 6.0 18 0.1975 1.0
No log 7.0 21 0.1907 1.0
No log 8.0 24 0.1854 1.0
No log 9.0 27 0.1790 1.0
No log 10.0 30 0.1755 1.0
No log 11.0 33 0.1725 1.0
No log 12.0 36 0.1675 1.0
No log 13.0 39 0.1622 1.0
No log 14.0 42 0.1585 1.0
No log 15.0 45 0.1565 1.0
No log 16.0 48 0.1552 1.0
No log 17.0 51 0.1541 1.0
No log 18.0 54 0.1535 1.0
No log 19.0 57 0.1531 1.0
No log 20.0 60 0.1529 1.0

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
31
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ngusadeep/vit-ID-classifier

Finetuned
(907)
this model