File size: 13,993 Bytes
9c627f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
---
datasets:
- multimolecule/rnacentral
- multimolecule/rfam
- multimolecule/ensembl-genome-browser
- multimolecule/nucleotide
language: rna
library_name: multimolecule
license: agpl-3.0
mask_token: <mask>
pipeline_tag: fill-mask
tags:
- Biology
- RNA
- ncRNA
widget:
- example_title: microRNA 21
output:
- label: W
score: 1.0
- label: K
score: 0.0
- label: H
score: 0.0
- label: <unk>
score: 0.0
- label: B
score: 0.0
text: UAGCUUAUCAGAC<mask>GAUGUUGA
- example_title: microRNA 146a
output:
- label: W
score: 1.0
- label: K
score: 0.0
- label: H
score: 0.0
- label: '-'
score: 0.0
- label: <mask>
score: 0.0
text: UGAGAACUGAA<mask>UCCAUGGGUU
- example_title: microRNA 155
output:
- label: W
score: 1.0
- label: K
score: 0.0
- label: H
score: 0.0
- label: <mask>
score: 0.0
- label: <unk>
score: 0.0
text: UUAAUGCUAA<mask>CGUGAUAGGGGUU
- example_title: metastasis associated lung adenocarcinoma transcript 1
output:
- label: W
score: 1.0
- label: H
score: 0.0
- label: K
score: 0.0
- label: <unk>
score: 0.0
- label: M
score: 0.0
text: AGGCAUUGAGGCAGCCAGCGCAGGGGC<mask>UCUGCUGAGGGGGCAGGCGGAGCUUGAGGAAA
- example_title: Pvt1 oncogene
output:
- label: W
score: 1.0
- label: K
score: 0.0
- label: '-'
score: 0.0
- label: H
score: 0.0
- label: N
score: 0.0
text: CCCGCGCUCC<mask>CCGGGCAGAGCGCGUGUGGCGGCCGAGCACAUGGGCCCGCGGGCCGGGC
- example_title: telomerase RNA component
output:
- label: W
score: 0.999979
- label: K
score: 2.1e-05
- label: H
score: 0.0
- label: '-'
score: 0.0
- label: <unk>
score: 0.0
text: GGGUUGCGGAGGG<mask>GGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAG
- example_title: vault RNA 2-1
output:
- label: W
score: 1.0
- label: K
score: 0.0
- label: '-'
score: 0.0
- label: H
score: 0.0
- label: M
score: 0.0
text: CGGGUCGGAG<mask>UAGCUCAAGCGGUUACCUCCUCAUGCCGGACUUUCUAUCUGUCCAUCUCUGUGCUGGGGUUCGAGACCCGCGGGUGCUUACUGACCCUUUUAUGCAA
- example_title: brain cytoplasmic RNA 1
output:
- label: <unk>
score: 0.643389
- label: H
score: 0.356611
- label: W
score: 0.0
- label: V
score: 0.0
- label: G
score: 0.0
text: GGCCGGGCGCGG<mask>GGCUCACGCCUGUAAUCCCAGCUCUCAGGGAGGCUAAGAGGCGGGAGGAUAGCUUGAGCCCAGGAGUUCGAGACCUGCCUGGGCAAUAUAGCGAGACCCCGUUCUCCAGAAAAAGGAAAAAAAAAAACAAAAGACAAAAAAAAAAUAAGCGUAACUUCCCUCAAAGCAACAACCCCCCCCCCCCUUU
- example_title: HIV-1 TAR-WT
output:
- label: W
score: 0.875797
- label: H
score: 0.123927
- label: '-'
score: 0.000231
- label: K
score: 3.2e-05
- label: M
score: 7.0e-06
text: GGUCUCUCUGG<mask>UAGACCAGAUCUGAGCCUGGGAGCUCUCUGGCUAACUAGGGAACC
---
# RiNALMo
Pre-trained model on non-coding RNA (ncRNA) using a masked language modeling (MLM) objective.
## Disclaimer
This is an UNOFFICIAL implementation of the [RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks](https://doi.org/10.48550/arXiv.2403.00043) by Rafael Josip Penić, et al.
The OFFICIAL repository of RiNALMo is at [lbcb-sci/RiNALMo](https://github.com/lbcb-sci/RiNALMo).
> [!TIP]
> The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
**The team releasing RiNALMo did not write this model card for this model so this model card has been written by the MultiMolecule team.**
## Model Details
RiNALMo is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.
### Variants
- **[multimolecule/rinalmo-mega](https://huggingface.co/multimolecule/rinalmo-mega)**: The RiNALMo model with 150 million parameters.
- **[multimolecule/rinalmo-giga](https://huggingface.co/multimolecule/rinalmo-giga)**: The RiNALMo model with 650 million parameters.
- **[multimolecule/rinalmo-micro](https://huggingface.co/multimolecule/rinalmo-micro)**: The RiNALMo model with 30 million parameters.
### Model Specification
<table>
<thead>
<tr>
<th>Variants</th>
<th>Num Layers</th>
<th>Hidden Size</th>
<th>Num Heads</th>
<th>Intermediate Size</th>
<th>Num Parameters (M)</th>
<th>FLOPs (G)</th>
<th>MACs (G)</th>
<th>Max Num Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>RiNALMo-Mega</td>
<td>30</td>
<td>640</td>
<td rowspan="3">20</td>
<td>2560</td>
<td>148.04</td>
<td>39.03</td>
<td>19.5</td>
<td rowspan="3">1022</td>
</tr>
<tr>
<td>RiNALMo-Giga</td>
<td>33</td>
<td>1280</td>
<td>5120</td>
<td>650.88</td>
<td>168.92</td>
<td>84.43</td>
</tr>
<tr>
<td>RiNALMo-Micro</td>
<td>12</td>
<td>480</td>
<td>1920</td>
<td>33.48</td>
<td>8.88</td>
<td>4.44</td>
</tr>
</tbody>
</table>
### Links
- **Code**: [multimolecule.rinalmo](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/rinalmo)
- **Data**: [multimolecule/rnacentral](https://huggingface.co/datasets/multimolecule/rnacentral)
- **Paper**: [RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks](https://doi.org/10.48550/arXiv.2403.00043)
- **Developed by**: Rafael Josip Penić, Tin Vlašić, Roland G. Huber, Yue Wan, Mile Šikić
- **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased)
- **Original Repository**: [lbcb-sci/RiNALMo](https://github.com/lbcb-sci/RiNALMo)
## Usage
The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:
```bash
pip install multimolecule
```
### Direct Use
#### Masked Language Modeling
You can use this model directly with a pipeline for masked language modeling:
```python
>>> import multimolecule # you must import multimolecule to register models
>>> from transformers import pipeline
>>> unmasker = pipeline("fill-mask", model="multimolecule/rinalmo-mega")
>>> unmasker("gguc<mask>cucugguuagaccagaucugagccu")
[{'score': 0.2527551054954529,
'token': 10,
'token_str': 'N',
'sequence': 'G G U C N C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.13404159247875214,
'token': 11,
'token_str': 'R',
'sequence': 'G G U C R C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.09840001165866852,
'token': 15,
'token_str': 'K',
'sequence': 'G G U C K C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.07807068526744843,
'token': 14,
'token_str': 'W',
'sequence': 'G G U C W C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.06360691040754318,
'token': 9,
'token_str': 'U',
'sequence': 'G G U C U C U C U G G U U A G A C C A G A U C U G A G C C U'}]
```
### Downstream Use
#### Extract Features
Here is how to use this model to get the features of a given sequence in PyTorch:
```python
from multimolecule import RnaTokenizer, RiNALMoModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
model = RiNALMoModel.from_pretrained("multimolecule/rinalmo-mega")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
output = model(**input)
```
#### Sequence Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, RiNALMoForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
model = RiNALMoForSequencePrediction.from_pretrained("multimolecule/rinalmo-mega")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])
output = model(**input, labels=label)
```
#### Token Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression.
Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, RiNALMoForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
model = RiNALMoForTokenPrediction.from_pretrained("multimolecule/rinalmo-mega")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))
output = model(**input, labels=label)
```
#### Contact Classification / Regression
> [!NOTE]
> This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
```python
import torch
from multimolecule import RnaTokenizer, RiNALMoForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
model = RiNALMoForContactPrediction.from_pretrained("multimolecule/rinalmo-mega")
text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))
output = model(**input, labels=label)
```
## Training Details
RiNALMo used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
### Training Data
The RiNALMo model was pre-trained on a cocktail of databases including [RNAcentral](https://rnacentral.org), [Rfam](https://rfam.org), [Ensembl Genome Browser](https://ensembl.org), and [Nucleotide](https://ncbi.nlm.nih.gov/nucleotide).
The training data contains 36 million unique ncRNA sequences.
To ensure sequence diversity in each training batch, RiNALMo clustered the sequences with [MMSeqs2](https://github.com/soedinglab/MMseqs2) into 17 million clusters and then sampled each sequence in the batch from a different cluster.
RiNALMo preprocessed all tokens by replacing "U"s with "T"s.
Note that during model conversions, "T" is replaced with "U". [`RnaTokenizer`][multimolecule.RnaTokenizer] will convert "T"s to "U"s for you, you may disable this behaviour by passing `replace_T_with_U=False`.
### Training Procedure
#### Preprocessing
RiNALMo used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
#### Pre-training
The model was trained on 7 NVIDIA A100 GPUs with 80GiB memories.
- Batch Size: 1344
- Epochs: 6
- Learning rate: 5e-5
- Learning rate scheduler: Cosine
- Learning rate warm-up: 2,000 steps
- Learning rate minimum: 1e-5
- Dropout: 0.1
## Citation
**BibTeX**:
```bibtex
@ARTICLE{Penic2025-qf,
title = "{RiNALMo}: general-purpose {RNA} language models can generalize
well on structure prediction tasks",
author = "Peni{\'c}, Rafael Josip and Vla{\v s}i{\'c}, Tin and Huber,
Roland G and Wan, Yue and {\v S}iki{\'c}, Mile",
abstract = "While RNA has recently been recognized as an interesting
small-molecule drug target, many challenges remain to be
addressed before we take full advantage of it. This emphasizes
the necessity to improve our understanding of its structures and
functions. Over the years, sequencing technologies have produced
an enormous amount of unlabeled RNA data, which hides a huge
potential. Motivated by the successes of protein language
models, we introduce RiboNucleic Acid Language Model (RiNALMo)
to unveil the hidden code of RNA. RiNALMo is the largest RNA
language model to date, with 650M parameters pre-trained on 36M
non-coding RNA sequences from several databases. It can extract
hidden knowledge and capture the underlying structure
information implicitly embedded within the RNA sequences.
RiNALMo achieves state-of-the-art results on several downstream
tasks. Notably, we show that its generalization capabilities
overcome the inability of other deep learning methods for
secondary structure prediction to generalize on unseen RNA
families.",
journal = "Nature Communications",
publisher = "Springer Science and Business Media LLC",
volume = 16,
number = 1,
pages = "5671",
month = jul,
year = 2025,
copyright = "https://creativecommons.org/licenses/by-nc-nd/4.0",
language = "en"
}
```
## Contact
Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.
Please contact the authors of the [RiNALMo paper](https://doi.org/10.48550/arXiv.2403.00043) for questions or comments on the paper/model.
## License
This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).
```spdx
SPDX-License-Identifier: AGPL-3.0-or-later
``` |