ZhiyuanChen commited on
Commit
9c627f7
·
verified ·
1 Parent(s): bbe0289

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - multimolecule/rnacentral
4
+ - multimolecule/rfam
5
+ - multimolecule/ensembl-genome-browser
6
+ - multimolecule/nucleotide
7
+ language: rna
8
+ library_name: multimolecule
9
+ license: agpl-3.0
10
+ mask_token: <mask>
11
+ pipeline_tag: fill-mask
12
+ tags:
13
+ - Biology
14
+ - RNA
15
+ - ncRNA
16
+ widget:
17
+ - example_title: microRNA 21
18
+ output:
19
+ - label: W
20
+ score: 1.0
21
+ - label: K
22
+ score: 0.0
23
+ - label: H
24
+ score: 0.0
25
+ - label: <unk>
26
+ score: 0.0
27
+ - label: B
28
+ score: 0.0
29
+ text: UAGCUUAUCAGAC<mask>GAUGUUGA
30
+ - example_title: microRNA 146a
31
+ output:
32
+ - label: W
33
+ score: 1.0
34
+ - label: K
35
+ score: 0.0
36
+ - label: H
37
+ score: 0.0
38
+ - label: '-'
39
+ score: 0.0
40
+ - label: <mask>
41
+ score: 0.0
42
+ text: UGAGAACUGAA<mask>UCCAUGGGUU
43
+ - example_title: microRNA 155
44
+ output:
45
+ - label: W
46
+ score: 1.0
47
+ - label: K
48
+ score: 0.0
49
+ - label: H
50
+ score: 0.0
51
+ - label: <mask>
52
+ score: 0.0
53
+ - label: <unk>
54
+ score: 0.0
55
+ text: UUAAUGCUAA<mask>CGUGAUAGGGGUU
56
+ - example_title: metastasis associated lung adenocarcinoma transcript 1
57
+ output:
58
+ - label: W
59
+ score: 1.0
60
+ - label: H
61
+ score: 0.0
62
+ - label: K
63
+ score: 0.0
64
+ - label: <unk>
65
+ score: 0.0
66
+ - label: M
67
+ score: 0.0
68
+ text: AGGCAUUGAGGCAGCCAGCGCAGGGGC<mask>UCUGCUGAGGGGGCAGGCGGAGCUUGAGGAAA
69
+ - example_title: Pvt1 oncogene
70
+ output:
71
+ - label: W
72
+ score: 1.0
73
+ - label: K
74
+ score: 0.0
75
+ - label: '-'
76
+ score: 0.0
77
+ - label: H
78
+ score: 0.0
79
+ - label: N
80
+ score: 0.0
81
+ text: CCCGCGCUCC<mask>CCGGGCAGAGCGCGUGUGGCGGCCGAGCACAUGGGCCCGCGGGCCGGGC
82
+ - example_title: telomerase RNA component
83
+ output:
84
+ - label: W
85
+ score: 0.999979
86
+ - label: K
87
+ score: 2.1e-05
88
+ - label: H
89
+ score: 0.0
90
+ - label: '-'
91
+ score: 0.0
92
+ - label: <unk>
93
+ score: 0.0
94
+ text: GGGUUGCGGAGGG<mask>GGGCCUGGGAGGGGUGGUGGCCAUUUUUUGUCUAACCCUAACUGAG
95
+ - example_title: vault RNA 2-1
96
+ output:
97
+ - label: W
98
+ score: 1.0
99
+ - label: K
100
+ score: 0.0
101
+ - label: '-'
102
+ score: 0.0
103
+ - label: H
104
+ score: 0.0
105
+ - label: M
106
+ score: 0.0
107
+ text: CGGGUCGGAG<mask>UAGCUCAAGCGGUUACCUCCUCAUGCCGGACUUUCUAUCUGUCCAUCUCUGUGCUGGGGUUCGAGACCCGCGGGUGCUUACUGACCCUUUUAUGCAA
108
+ - example_title: brain cytoplasmic RNA 1
109
+ output:
110
+ - label: <unk>
111
+ score: 0.643389
112
+ - label: H
113
+ score: 0.356611
114
+ - label: W
115
+ score: 0.0
116
+ - label: V
117
+ score: 0.0
118
+ - label: G
119
+ score: 0.0
120
+ text: GGCCGGGCGCGG<mask>GGCUCACGCCUGUAAUCCCAGCUCUCAGGGAGGCUAAGAGGCGGGAGGAUAGCUUGAGCCCAGGAGUUCGAGACCUGCCUGGGCAAUAUAGCGAGACCCCGUUCUCCAGAAAAAGGAAAAAAAAAAACAAAAGACAAAAAAAAAAUAAGCGUAACUUCCCUCAAAGCAACAACCCCCCCCCCCCUUU
121
+ - example_title: HIV-1 TAR-WT
122
+ output:
123
+ - label: W
124
+ score: 0.875797
125
+ - label: H
126
+ score: 0.123927
127
+ - label: '-'
128
+ score: 0.000231
129
+ - label: K
130
+ score: 3.2e-05
131
+ - label: M
132
+ score: 7.0e-06
133
+ text: GGUCUCUCUGG<mask>UAGACCAGAUCUGAGCCUGGGAGCUCUCUGGCUAACUAGGGAACC
134
+ ---
135
+
136
+ # RiNALMo
137
+
138
+ Pre-trained model on non-coding RNA (ncRNA) using a masked language modeling (MLM) objective.
139
+
140
+ ## Disclaimer
141
+
142
+ This is an UNOFFICIAL implementation of the [RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks](https://doi.org/10.48550/arXiv.2403.00043) by Rafael Josip Penić, et al.
143
+
144
+ The OFFICIAL repository of RiNALMo is at [lbcb-sci/RiNALMo](https://github.com/lbcb-sci/RiNALMo).
145
+
146
+ > [!TIP]
147
+ > The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
148
+
149
+ **The team releasing RiNALMo did not write this model card for this model so this model card has been written by the MultiMolecule team.**
150
+
151
+ ## Model Details
152
+
153
+ RiNALMo is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.
154
+
155
+ ### Variants
156
+
157
+ - **[multimolecule/rinalmo-mega](https://huggingface.co/multimolecule/rinalmo-mega)**: The RiNALMo model with 150 million parameters.
158
+ - **[multimolecule/rinalmo-giga](https://huggingface.co/multimolecule/rinalmo-giga)**: The RiNALMo model with 650 million parameters.
159
+ - **[multimolecule/rinalmo-micro](https://huggingface.co/multimolecule/rinalmo-micro)**: The RiNALMo model with 30 million parameters.
160
+
161
+ ### Model Specification
162
+
163
+ <table>
164
+ <thead>
165
+ <tr>
166
+ <th>Variants</th>
167
+ <th>Num Layers</th>
168
+ <th>Hidden Size</th>
169
+ <th>Num Heads</th>
170
+ <th>Intermediate Size</th>
171
+ <th>Num Parameters (M)</th>
172
+ <th>FLOPs (G)</th>
173
+ <th>MACs (G)</th>
174
+ <th>Max Num Tokens</th>
175
+ </tr>
176
+ </thead>
177
+ <tbody>
178
+ <tr>
179
+ <td>RiNALMo-Mega</td>
180
+ <td>30</td>
181
+ <td>640</td>
182
+ <td rowspan="3">20</td>
183
+ <td>2560</td>
184
+ <td>148.04</td>
185
+ <td>39.03</td>
186
+ <td>19.5</td>
187
+ <td rowspan="3">1022</td>
188
+ </tr>
189
+ <tr>
190
+ <td>RiNALMo-Giga</td>
191
+ <td>33</td>
192
+ <td>1280</td>
193
+ <td>5120</td>
194
+ <td>650.88</td>
195
+ <td>168.92</td>
196
+ <td>84.43</td>
197
+ </tr>
198
+ <tr>
199
+ <td>RiNALMo-Micro</td>
200
+ <td>12</td>
201
+ <td>480</td>
202
+ <td>1920</td>
203
+ <td>33.48</td>
204
+ <td>8.88</td>
205
+ <td>4.44</td>
206
+ </tr>
207
+ </tbody>
208
+ </table>
209
+
210
+ ### Links
211
+
212
+ - **Code**: [multimolecule.rinalmo](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/rinalmo)
213
+ - **Data**: [multimolecule/rnacentral](https://huggingface.co/datasets/multimolecule/rnacentral)
214
+ - **Paper**: [RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks](https://doi.org/10.48550/arXiv.2403.00043)
215
+ - **Developed by**: Rafael Josip Penić, Tin Vlašić, Roland G. Huber, Yue Wan, Mile Šikić
216
+ - **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased)
217
+ - **Original Repository**: [lbcb-sci/RiNALMo](https://github.com/lbcb-sci/RiNALMo)
218
+
219
+ ## Usage
220
+
221
+ The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:
222
+
223
+ ```bash
224
+ pip install multimolecule
225
+ ```
226
+
227
+ ### Direct Use
228
+
229
+ #### Masked Language Modeling
230
+
231
+ You can use this model directly with a pipeline for masked language modeling:
232
+
233
+ ```python
234
+ >>> import multimolecule # you must import multimolecule to register models
235
+ >>> from transformers import pipeline
236
+
237
+ >>> unmasker = pipeline("fill-mask", model="multimolecule/rinalmo-mega")
238
+ >>> unmasker("gguc<mask>cucugguuagaccagaucugagccu")
239
+ [{'score': 0.2527551054954529,
240
+ 'token': 10,
241
+ 'token_str': 'N',
242
+ 'sequence': 'G G U C N C U C U G G U U A G A C C A G A U C U G A G C C U'},
243
+ {'score': 0.13404159247875214,
244
+ 'token': 11,
245
+ 'token_str': 'R',
246
+ 'sequence': 'G G U C R C U C U G G U U A G A C C A G A U C U G A G C C U'},
247
+ {'score': 0.09840001165866852,
248
+ 'token': 15,
249
+ 'token_str': 'K',
250
+ 'sequence': 'G G U C K C U C U G G U U A G A C C A G A U C U G A G C C U'},
251
+ {'score': 0.07807068526744843,
252
+ 'token': 14,
253
+ 'token_str': 'W',
254
+ 'sequence': 'G G U C W C U C U G G U U A G A C C A G A U C U G A G C C U'},
255
+ {'score': 0.06360691040754318,
256
+ 'token': 9,
257
+ 'token_str': 'U',
258
+ 'sequence': 'G G U C U C U C U G G U U A G A C C A G A U C U G A G C C U'}]
259
+ ```
260
+
261
+ ### Downstream Use
262
+
263
+ #### Extract Features
264
+
265
+ Here is how to use this model to get the features of a given sequence in PyTorch:
266
+
267
+ ```python
268
+ from multimolecule import RnaTokenizer, RiNALMoModel
269
+
270
+
271
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
272
+ model = RiNALMoModel.from_pretrained("multimolecule/rinalmo-mega")
273
+
274
+ text = "UAGCUUAUCAGACUGAUGUUG"
275
+ input = tokenizer(text, return_tensors="pt")
276
+
277
+ output = model(**input)
278
+ ```
279
+
280
+ #### Sequence Classification / Regression
281
+
282
+ > [!NOTE]
283
+ > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
284
+
285
+ Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
286
+
287
+ ```python
288
+ import torch
289
+ from multimolecule import RnaTokenizer, RiNALMoForSequencePrediction
290
+
291
+
292
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
293
+ model = RiNALMoForSequencePrediction.from_pretrained("multimolecule/rinalmo-mega")
294
+
295
+ text = "UAGCUUAUCAGACUGAUGUUG"
296
+ input = tokenizer(text, return_tensors="pt")
297
+ label = torch.tensor([1])
298
+
299
+ output = model(**input, labels=label)
300
+ ```
301
+
302
+ #### Token Classification / Regression
303
+
304
+ > [!NOTE]
305
+ > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression.
306
+
307
+ Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
308
+
309
+ ```python
310
+ import torch
311
+ from multimolecule import RnaTokenizer, RiNALMoForTokenPrediction
312
+
313
+
314
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
315
+ model = RiNALMoForTokenPrediction.from_pretrained("multimolecule/rinalmo-mega")
316
+
317
+ text = "UAGCUUAUCAGACUGAUGUUG"
318
+ input = tokenizer(text, return_tensors="pt")
319
+ label = torch.randint(2, (len(text), ))
320
+
321
+ output = model(**input, labels=label)
322
+ ```
323
+
324
+ #### Contact Classification / Regression
325
+
326
+ > [!NOTE]
327
+ > This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
328
+
329
+ Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
330
+
331
+ ```python
332
+ import torch
333
+ from multimolecule import RnaTokenizer, RiNALMoForContactPrediction
334
+
335
+
336
+ tokenizer = RnaTokenizer.from_pretrained("multimolecule/rinalmo-mega")
337
+ model = RiNALMoForContactPrediction.from_pretrained("multimolecule/rinalmo-mega")
338
+
339
+ text = "UAGCUUAUCAGACUGAUGUUG"
340
+ input = tokenizer(text, return_tensors="pt")
341
+ label = torch.randint(2, (len(text), len(text)))
342
+
343
+ output = model(**input, labels=label)
344
+ ```
345
+
346
+ ## Training Details
347
+
348
+ RiNALMo used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
349
+
350
+ ### Training Data
351
+
352
+ The RiNALMo model was pre-trained on a cocktail of databases including [RNAcentral](https://rnacentral.org), [Rfam](https://rfam.org), [Ensembl Genome Browser](https://ensembl.org), and [Nucleotide](https://ncbi.nlm.nih.gov/nucleotide).
353
+ The training data contains 36 million unique ncRNA sequences.
354
+
355
+ To ensure sequence diversity in each training batch, RiNALMo clustered the sequences with [MMSeqs2](https://github.com/soedinglab/MMseqs2) into 17 million clusters and then sampled each sequence in the batch from a different cluster.
356
+
357
+ RiNALMo preprocessed all tokens by replacing "U"s with "T"s.
358
+
359
+ Note that during model conversions, "T" is replaced with "U". [`RnaTokenizer`][multimolecule.RnaTokenizer] will convert "T"s to "U"s for you, you may disable this behaviour by passing `replace_T_with_U=False`.
360
+
361
+ ### Training Procedure
362
+
363
+ #### Preprocessing
364
+
365
+ RiNALMo used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:
366
+
367
+ - 15% of the tokens are masked.
368
+ - In 80% of the cases, the masked tokens are replaced by `<mask>`.
369
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
370
+ - In the 10% remaining cases, the masked tokens are left as is.
371
+
372
+ #### Pre-training
373
+
374
+ The model was trained on 7 NVIDIA A100 GPUs with 80GiB memories.
375
+
376
+ - Batch Size: 1344
377
+ - Epochs: 6
378
+ - Learning rate: 5e-5
379
+ - Learning rate scheduler: Cosine
380
+ - Learning rate warm-up: 2,000 steps
381
+ - Learning rate minimum: 1e-5
382
+ - Dropout: 0.1
383
+
384
+ ## Citation
385
+
386
+ **BibTeX**:
387
+
388
+ ```bibtex
389
+ @ARTICLE{Penic2025-qf,
390
+ title = "{RiNALMo}: general-purpose {RNA} language models can generalize
391
+ well on structure prediction tasks",
392
+ author = "Peni{\'c}, Rafael Josip and Vla{\v s}i{\'c}, Tin and Huber,
393
+ Roland G and Wan, Yue and {\v S}iki{\'c}, Mile",
394
+ abstract = "While RNA has recently been recognized as an interesting
395
+ small-molecule drug target, many challenges remain to be
396
+ addressed before we take full advantage of it. This emphasizes
397
+ the necessity to improve our understanding of its structures and
398
+ functions. Over the years, sequencing technologies have produced
399
+ an enormous amount of unlabeled RNA data, which hides a huge
400
+ potential. Motivated by the successes of protein language
401
+ models, we introduce RiboNucleic Acid Language Model (RiNALMo)
402
+ to unveil the hidden code of RNA. RiNALMo is the largest RNA
403
+ language model to date, with 650M parameters pre-trained on 36M
404
+ non-coding RNA sequences from several databases. It can extract
405
+ hidden knowledge and capture the underlying structure
406
+ information implicitly embedded within the RNA sequences.
407
+ RiNALMo achieves state-of-the-art results on several downstream
408
+ tasks. Notably, we show that its generalization capabilities
409
+ overcome the inability of other deep learning methods for
410
+ secondary structure prediction to generalize on unseen RNA
411
+ families.",
412
+ journal = "Nature Communications",
413
+ publisher = "Springer Science and Business Media LLC",
414
+ volume = 16,
415
+ number = 1,
416
+ pages = "5671",
417
+ month = jul,
418
+ year = 2025,
419
+ copyright = "https://creativecommons.org/licenses/by-nc-nd/4.0",
420
+ language = "en"
421
+ }
422
+ ```
423
+
424
+ ## Contact
425
+
426
+ Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.
427
+
428
+ Please contact the authors of the [RiNALMo paper](https://doi.org/10.48550/arXiv.2403.00043) for questions or comments on the paper/model.
429
+
430
+ ## License
431
+
432
+ This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).
433
+
434
+ ```spdx
435
+ SPDX-License-Identifier: AGPL-3.0-or-later
436
+ ```
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RiNALMoForPreTraining"
4
+ ],
5
+ "attention_dropout": 0.1,
6
+ "bos_token_id": 1,
7
+ "emb_layer_norm_before": true,
8
+ "eos_token_id": 2,
9
+ "head": null,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout": 0.1,
12
+ "hidden_size": 640,
13
+ "id2label": null,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 2560,
16
+ "label2id": null,
17
+ "layer_norm_eps": 1e-05,
18
+ "learnable_beta": true,
19
+ "lm_head": null,
20
+ "mask_token_id": 4,
21
+ "max_position_embeddings": 1024,
22
+ "model_type": "rinalmo",
23
+ "null_token_id": 5,
24
+ "num_attention_heads": 20,
25
+ "num_hidden_layers": 30,
26
+ "num_labels": 1,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "rotary",
29
+ "token_dropout": true,
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.52.4",
32
+ "unk_token_id": 3,
33
+ "use_cache": true,
34
+ "vocab_size": 26
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:681e2a7e2d68915e4a2f6461ac14f7b74e02d30655729ec1ad1eb7f419255b5a
3
+ size 592303296
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd3ea76be3e878fdedb8065db7e7c1947028b3dcd885592a785fcc8917675b4
3
+ size 592385990
special_tokens_map.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<null>"
4
+ ],
5
+ "bos_token": "<cls>",
6
+ "cls_token": "<cls>",
7
+ "eos_token": "<eos>",
8
+ "mask_token": "<mask>",
9
+ "pad_token": "<pad>",
10
+ "sep_token": "<eos>",
11
+ "unk_token": "<unk>"
12
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<cls>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<eos>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<null>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "additional_special_tokens": [
53
+ "<null>"
54
+ ],
55
+ "bos_token": "<cls>",
56
+ "clean_up_tokenization_spaces": true,
57
+ "cls_token": "<cls>",
58
+ "codon": false,
59
+ "eos_token": "<eos>",
60
+ "extra_special_tokens": {},
61
+ "mask_token": "<mask>",
62
+ "model_max_length": 1000000000000000019884624838656,
63
+ "nmers": 1,
64
+ "pad_token": "<pad>",
65
+ "replace_T_with_U": true,
66
+ "sep_token": "<eos>",
67
+ "tokenizer_class": "RnaTokenizer",
68
+ "unk_token": "<unk>"
69
+ }
vocab.txt ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <pad>
2
+ <cls>
3
+ <eos>
4
+ <unk>
5
+ <mask>
6
+ <null>
7
+ A
8
+ C
9
+ G
10
+ U
11
+ N
12
+ R
13
+ Y
14
+ S
15
+ W
16
+ K
17
+ M
18
+ B
19
+ D
20
+ H
21
+ V
22
+ .
23
+ X
24
+ *
25
+ -
26
+ I