l3-whisper-medium-l2c_v6
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2449
- Wer: 18.3818
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.3468 | 0.0933 | 1000 | 0.3951 | 30.6669 |
| 0.2608 | 0.1866 | 2000 | 0.3316 | 25.5966 |
| 0.2264 | 0.2799 | 3000 | 0.3077 | 23.4182 |
| 0.2041 | 0.3731 | 4000 | 0.2867 | 22.0167 |
| 0.1891 | 0.4664 | 5000 | 0.2720 | 20.9015 |
| 0.1789 | 0.5597 | 6000 | 0.2669 | 20.0772 |
| 0.1708 | 0.6530 | 7000 | 0.2585 | 19.6288 |
| 0.1644 | 0.7463 | 8000 | 0.2524 | 18.8911 |
| 0.1604 | 0.8396 | 9000 | 0.2478 | 18.6108 |
| 0.155 | 0.9328 | 10000 | 0.2449 | 18.3818 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.4.1+cu124
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 1
Model tree for mondhs/l3-whisper-medium-l2c_v6
Base model
openai/whisper-medium