l3-whisper-medium-l2c3_e4_v12

This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2667
  • Wer: 16.7248

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2269 0.2741 3000 0.2934 23.0264
0.1841 0.5482 6000 0.2579 20.6687
0.1617 0.8223 9000 0.2450 18.6915
0.1109 1.0964 12000 0.2430 17.9395
0.1104 1.3705 15000 0.2415 17.7986
0.1084 1.6446 18000 0.2366 17.5544
0.1047 1.9187 21000 0.2269 17.1679
0.0682 2.1928 24000 0.2472 16.7482
0.0686 2.4669 27000 0.2402 17.0820
0.0678 2.7410 30000 0.2434 17.0435
0.0579 3.0151 33000 0.2555 16.9403
0.0399 3.2892 36000 0.2642 16.7723
0.0392 3.5633 39000 0.2690 16.8861
0.0383 3.8374 42000 0.2667 16.7248

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
1
Safetensors
Model size
0.8B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mondhs/l3-whisper-medium-l2c3_e4_v12

Finetuned
(740)
this model