l3-whisper-medium-l2c3_e4_v12
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2667
- Wer: 16.7248
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.2269 | 0.2741 | 3000 | 0.2934 | 23.0264 |
| 0.1841 | 0.5482 | 6000 | 0.2579 | 20.6687 |
| 0.1617 | 0.8223 | 9000 | 0.2450 | 18.6915 |
| 0.1109 | 1.0964 | 12000 | 0.2430 | 17.9395 |
| 0.1104 | 1.3705 | 15000 | 0.2415 | 17.7986 |
| 0.1084 | 1.6446 | 18000 | 0.2366 | 17.5544 |
| 0.1047 | 1.9187 | 21000 | 0.2269 | 17.1679 |
| 0.0682 | 2.1928 | 24000 | 0.2472 | 16.7482 |
| 0.0686 | 2.4669 | 27000 | 0.2402 | 17.0820 |
| 0.0678 | 2.7410 | 30000 | 0.2434 | 17.0435 |
| 0.0579 | 3.0151 | 33000 | 0.2555 | 16.9403 |
| 0.0399 | 3.2892 | 36000 | 0.2642 | 16.7723 |
| 0.0392 | 3.5633 | 39000 | 0.2690 | 16.8861 |
| 0.0383 | 3.8374 | 42000 | 0.2667 | 16.7248 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 1
Model tree for mondhs/l3-whisper-medium-l2c3_e4_v12
Base model
openai/whisper-medium