wisper-small-tigre
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5606
- Wer: 0.5816
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.4124 | 6.7568 | 500 | 0.2653 | 1.2609 |
| 0.0549 | 13.5135 | 1000 | 0.3898 | 0.7472 |
| 0.0073 | 20.2703 | 1500 | 0.4585 | 0.6313 |
| 0.0027 | 27.0270 | 2000 | 0.4898 | 0.5996 |
| 0.001 | 33.7838 | 2500 | 0.5110 | 0.5899 |
| 0.0002 | 40.5405 | 3000 | 0.5326 | 0.5899 |
| 0.0001 | 47.2973 | 3500 | 0.5452 | 0.5868 |
| 0.0001 | 54.0541 | 4000 | 0.5534 | 0.5854 |
| 0.0 | 60.8108 | 4500 | 0.5586 | 0.5849 |
| 0.0 | 67.5676 | 5000 | 0.5606 | 0.5816 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.6.0+cu124
- Datasets 2.18.0
- Tokenizers 0.21.2
- Downloads last month
- 8
Model tree for misterkissi/whisper-small-tigre
Base model
openai/whisper-small