vovinam-wav2vec2-base-vi
This model is a fine-tuned version of minhtien2405/wav2vec2-base-vi on the minhtien2405/VoviAIDataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.0657
- Wer: 0.0967
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.7084 | 0.2413 | 100 | 0.4609 | 0.3103 |
| 0.6193 | 0.4825 | 200 | 0.4034 | 0.2812 |
| 0.5565 | 0.7238 | 300 | 0.3769 | 0.2592 |
| 0.5444 | 0.9650 | 400 | 0.3177 | 0.2376 |
| 0.4498 | 1.2051 | 500 | 0.2961 | 0.2211 |
| 0.4444 | 1.4463 | 600 | 0.2689 | 0.2153 |
| 0.4495 | 1.6876 | 700 | 0.2312 | 0.2023 |
| 0.3887 | 1.9288 | 800 | 0.2392 | 0.1943 |
| 0.3425 | 2.1689 | 900 | 0.2424 | 0.1930 |
| 0.3801 | 2.4101 | 1000 | 0.2223 | 0.1864 |
| 0.3344 | 2.6514 | 1100 | 0.2196 | 0.1822 |
| 0.3239 | 2.8926 | 1200 | 0.1846 | 0.1709 |
| 0.2972 | 3.1327 | 1300 | 0.1708 | 0.1597 |
| 0.2996 | 3.3739 | 1400 | 0.1875 | 0.1687 |
| 0.2752 | 3.6152 | 1500 | 0.1885 | 0.1629 |
| 0.2953 | 3.8565 | 1600 | 0.2027 | 0.1592 |
| 0.249 | 4.0965 | 1700 | 0.1725 | 0.1554 |
| 0.2596 | 4.3378 | 1800 | 0.1774 | 0.1593 |
| 0.2572 | 4.5790 | 1900 | 0.1583 | 0.1516 |
| 0.2642 | 4.8203 | 2000 | 0.1656 | 0.1555 |
| 0.2263 | 5.0603 | 2100 | 0.1425 | 0.1470 |
| 0.2293 | 5.3016 | 2200 | 0.1376 | 0.1401 |
| 0.2208 | 5.5428 | 2300 | 0.1448 | 0.1387 |
| 0.2187 | 5.7841 | 2400 | 0.1414 | 0.1381 |
| 0.2224 | 6.0241 | 2500 | 0.1587 | 0.1445 |
| 0.2137 | 6.2654 | 2600 | 0.1350 | 0.1436 |
| 0.198 | 6.5066 | 2700 | 0.1501 | 0.1397 |
| 0.1901 | 6.7479 | 2800 | 0.1407 | 0.1385 |
| 0.201 | 6.9891 | 2900 | 0.1542 | 0.1439 |
| 0.1916 | 7.2292 | 3000 | 0.1506 | 0.1450 |
| 0.1815 | 7.4704 | 3100 | 0.1372 | 0.1384 |
| 0.1735 | 7.7117 | 3200 | 0.1350 | 0.1317 |
| 0.1857 | 7.9530 | 3300 | 0.1489 | 0.1396 |
| 0.1627 | 8.1930 | 3400 | 0.1352 | 0.1321 |
| 0.1944 | 8.4343 | 3500 | 0.1173 | 0.1297 |
| 0.1834 | 8.6755 | 3600 | 0.1230 | 0.1286 |
| 0.1713 | 8.9168 | 3700 | 0.1248 | 0.1306 |
| 0.1523 | 9.1568 | 3800 | 0.1228 | 0.1348 |
| 0.1534 | 9.3981 | 3900 | 0.1139 | 0.1317 |
| 0.1583 | 9.6393 | 4000 | 0.0971 | 0.1195 |
| 0.1541 | 9.8806 | 4100 | 0.1144 | 0.1306 |
| 0.1348 | 10.1206 | 4200 | 0.1238 | 0.1315 |
| 0.1426 | 10.3619 | 4300 | 0.1248 | 0.1234 |
| 0.1538 | 10.6031 | 4400 | 0.1238 | 0.1264 |
| 0.1534 | 10.8444 | 4500 | 0.1341 | 0.1317 |
| 0.1516 | 11.0844 | 4600 | 0.1041 | 0.1239 |
| 0.1402 | 11.3257 | 4700 | 0.1132 | 0.1262 |
| 0.1438 | 11.5669 | 4800 | 0.1019 | 0.1172 |
| 0.1398 | 11.8082 | 4900 | 0.1047 | 0.1228 |
| 0.1363 | 12.0483 | 5000 | 0.1151 | 0.1196 |
| 0.1307 | 12.2895 | 5100 | 0.1157 | 0.1229 |
| 0.133 | 12.5308 | 5200 | 0.1147 | 0.1222 |
| 0.1343 | 12.7720 | 5300 | 0.1010 | 0.1190 |
| 0.134 | 13.0121 | 5400 | 0.1092 | 0.1227 |
| 0.128 | 13.2533 | 5500 | 0.1002 | 0.1204 |
| 0.1254 | 13.4946 | 5600 | 0.1164 | 0.1224 |
| 0.1243 | 13.7358 | 5700 | 0.0977 | 0.1158 |
| 0.1316 | 13.9771 | 5800 | 0.1024 | 0.1172 |
| 0.1256 | 14.2171 | 5900 | 0.0923 | 0.1148 |
| 0.1244 | 14.4584 | 6000 | 0.1141 | 0.1220 |
| 0.1248 | 14.6996 | 6100 | 0.0989 | 0.1204 |
| 0.1212 | 14.9409 | 6200 | 0.0888 | 0.1151 |
| 0.131 | 15.1809 | 6300 | 0.0956 | 0.1145 |
| 0.1143 | 15.4222 | 6400 | 0.0901 | 0.1120 |
| 0.1179 | 15.6634 | 6500 | 0.1007 | 0.1185 |
| 0.1172 | 15.9047 | 6600 | 0.1031 | 0.1161 |
| 0.1012 | 16.1448 | 6700 | 0.0913 | 0.1159 |
| 0.0919 | 16.3860 | 6800 | 0.1028 | 0.1172 |
| 0.1072 | 16.6273 | 6900 | 0.1010 | 0.1184 |
| 0.0926 | 16.8685 | 7000 | 0.0909 | 0.1133 |
| 0.0995 | 17.1086 | 7100 | 0.0952 | 0.1150 |
| 0.1032 | 17.3498 | 7200 | 0.0905 | 0.1113 |
| 0.0967 | 17.5911 | 7300 | 0.0964 | 0.1158 |
| 0.0985 | 17.8323 | 7400 | 0.0991 | 0.1144 |
| 0.097 | 18.0724 | 7500 | 0.0853 | 0.1105 |
| 0.0956 | 18.3136 | 7600 | 0.0968 | 0.1124 |
| 0.102 | 18.5549 | 7700 | 0.0963 | 0.1131 |
| 0.1025 | 18.7961 | 7800 | 0.0874 | 0.1111 |
| 0.0968 | 19.0362 | 7900 | 0.0830 | 0.1095 |
| 0.0821 | 19.2774 | 8000 | 0.0955 | 0.1126 |
| 0.0877 | 19.5187 | 8100 | 0.0929 | 0.1122 |
| 0.0867 | 19.7600 | 8200 | 0.0843 | 0.1132 |
| 0.0836 | 20.0 | 8300 | 0.0901 | 0.1112 |
| 0.0886 | 20.2413 | 8400 | 0.0968 | 0.1161 |
| 0.0855 | 20.4825 | 8500 | 0.1025 | 0.1117 |
| 0.0868 | 20.7238 | 8600 | 0.1219 | 0.1151 |
| 0.0929 | 20.9650 | 8700 | 0.0992 | 0.1168 |
| 0.0744 | 21.2051 | 8800 | 0.0977 | 0.1151 |
| 0.0856 | 21.4463 | 8900 | 0.0958 | 0.1139 |
| 0.0791 | 21.6876 | 9000 | 0.1004 | 0.1142 |
| 0.091 | 21.9288 | 9100 | 0.1011 | 0.1184 |
| 0.0752 | 22.1689 | 9200 | 0.0995 | 0.1176 |
| 0.0785 | 22.4101 | 9300 | 0.0993 | 0.1105 |
| 0.0848 | 22.6514 | 9400 | 0.0794 | 0.1168 |
| 0.0808 | 22.8926 | 9500 | 0.0859 | 0.1099 |
| 0.0778 | 23.1327 | 9600 | 0.0862 | 0.1074 |
| 0.0748 | 23.3739 | 9700 | 0.0924 | 0.1132 |
| 0.0741 | 23.6152 | 9800 | 0.0880 | 0.1127 |
| 0.0741 | 23.8565 | 9900 | 0.0933 | 0.1121 |
| 0.0765 | 24.0965 | 10000 | 0.0819 | 0.1055 |
| 0.0656 | 24.3378 | 10100 | 0.0869 | 0.1068 |
| 0.0766 | 24.5790 | 10200 | 0.0748 | 0.1031 |
| 0.0647 | 24.8203 | 10300 | 0.0831 | 0.1046 |
| 0.0648 | 25.0603 | 10400 | 0.0774 | 0.1077 |
| 0.07 | 25.3016 | 10500 | 0.0817 | 0.1054 |
| 0.0713 | 25.5428 | 10600 | 0.0823 | 0.1069 |
| 0.0705 | 25.7841 | 10700 | 0.0800 | 0.1044 |
| 0.0622 | 26.0241 | 10800 | 0.0837 | 0.1093 |
| 0.0711 | 26.2654 | 10900 | 0.0798 | 0.1031 |
| 0.0607 | 26.5066 | 11000 | 0.0844 | 0.1046 |
| 0.0574 | 26.7479 | 11100 | 0.0799 | 0.1037 |
| 0.0491 | 26.9891 | 11200 | 0.0846 | 0.1052 |
| 0.0642 | 27.2292 | 11300 | 0.0752 | 0.1045 |
| 0.0674 | 27.4704 | 11400 | 0.0815 | 0.1068 |
| 0.0601 | 27.7117 | 11500 | 0.0816 | 0.1067 |
| 0.0584 | 27.9530 | 11600 | 0.0711 | 0.1076 |
| 0.0705 | 28.1930 | 11700 | 0.0729 | 0.1058 |
| 0.0535 | 28.4343 | 11800 | 0.0724 | 0.1048 |
| 0.0703 | 28.6755 | 11900 | 0.0798 | 0.1087 |
| 0.0527 | 28.9168 | 12000 | 0.0783 | 0.1043 |
| 0.0548 | 29.1568 | 12100 | 0.0743 | 0.1040 |
| 0.0435 | 29.3981 | 12200 | 0.0750 | 0.1038 |
| 0.0571 | 29.6393 | 12300 | 0.0653 | 0.1043 |
| 0.057 | 29.8806 | 12400 | 0.0705 | 0.1019 |
| 0.0514 | 30.1206 | 12500 | 0.0691 | 0.1009 |
| 0.0486 | 30.3619 | 12600 | 0.0698 | 0.1015 |
| 0.0514 | 30.6031 | 12700 | 0.0742 | 0.1019 |
| 0.0562 | 30.8444 | 12800 | 0.0772 | 0.1024 |
| 0.0662 | 31.0844 | 12900 | 0.0701 | 0.1019 |
| 0.0521 | 31.3257 | 13000 | 0.0696 | 0.1005 |
| 0.0438 | 31.5669 | 13100 | 0.0642 | 0.1000 |
| 0.0515 | 31.8082 | 13200 | 0.0677 | 0.1013 |
| 0.048 | 32.0483 | 13300 | 0.0615 | 0.1014 |
| 0.0485 | 32.2895 | 13400 | 0.0689 | 0.1017 |
| 0.0425 | 32.5308 | 13500 | 0.0750 | 0.1022 |
| 0.0482 | 32.7720 | 13600 | 0.0727 | 0.1043 |
| 0.0489 | 33.0121 | 13700 | 0.0604 | 0.0983 |
| 0.0408 | 33.2533 | 13800 | 0.0716 | 0.0990 |
| 0.0441 | 33.4946 | 13900 | 0.0741 | 0.1029 |
| 0.0401 | 33.7358 | 14000 | 0.0758 | 0.1008 |
| 0.0368 | 33.9771 | 14100 | 0.0779 | 0.0999 |
| 0.0498 | 34.2171 | 14200 | 0.0771 | 0.1026 |
| 0.0435 | 34.4584 | 14300 | 0.0693 | 0.1012 |
| 0.047 | 34.6996 | 14400 | 0.0663 | 0.1001 |
| 0.0479 | 34.9409 | 14500 | 0.0636 | 0.1000 |
| 0.0455 | 35.1809 | 14600 | 0.0658 | 0.1019 |
| 0.045 | 35.4222 | 14700 | 0.0718 | 0.0993 |
| 0.042 | 35.6634 | 14800 | 0.0785 | 0.1013 |
| 0.0451 | 35.9047 | 14900 | 0.0747 | 0.1017 |
| 0.0406 | 36.1448 | 15000 | 0.0719 | 0.1018 |
| 0.0403 | 36.3860 | 15100 | 0.0719 | 0.1052 |
| 0.036 | 36.6273 | 15200 | 0.0726 | 0.1018 |
| 0.0433 | 36.8685 | 15300 | 0.0781 | 0.1024 |
| 0.0373 | 37.1086 | 15400 | 0.0831 | 0.1020 |
| 0.0446 | 37.3498 | 15500 | 0.0878 | 0.1102 |
| 0.0452 | 37.5911 | 15600 | 0.0760 | 0.0997 |
| 0.0338 | 37.8323 | 15700 | 0.0733 | 0.0999 |
| 0.0388 | 38.0724 | 15800 | 0.0695 | 0.0989 |
| 0.0331 | 38.3136 | 15900 | 0.0732 | 0.0991 |
| 0.0328 | 38.5549 | 16000 | 0.0741 | 0.1020 |
| 0.0382 | 38.7961 | 16100 | 0.0685 | 0.1015 |
| 0.0387 | 39.0362 | 16200 | 0.0721 | 0.0998 |
| 0.0391 | 39.2774 | 16300 | 0.0689 | 0.0988 |
| 0.0357 | 39.5187 | 16400 | 0.0702 | 0.1011 |
| 0.0386 | 39.7600 | 16500 | 0.0673 | 0.1025 |
| 0.0333 | 40.0 | 16600 | 0.0662 | 0.1047 |
| 0.0255 | 40.2413 | 16700 | 0.0731 | 0.1073 |
| 0.0301 | 40.4825 | 16800 | 0.0669 | 0.0997 |
| 0.0296 | 40.7238 | 16900 | 0.0632 | 0.0982 |
| 0.0377 | 40.9650 | 17000 | 0.0649 | 0.0997 |
| 0.0448 | 41.2051 | 17100 | 0.0648 | 0.0993 |
| 0.0327 | 41.4463 | 17200 | 0.0699 | 0.0980 |
| 0.0267 | 41.6876 | 17300 | 0.0682 | 0.0990 |
| 0.0351 | 41.9288 | 17400 | 0.0630 | 0.0977 |
| 0.0379 | 42.1689 | 17500 | 0.0581 | 0.0963 |
| 0.0256 | 42.4101 | 17600 | 0.0604 | 0.0970 |
| 0.0289 | 42.6514 | 17700 | 0.0596 | 0.0963 |
| 0.0307 | 42.8926 | 17800 | 0.0604 | 0.0969 |
| 0.0241 | 43.1327 | 17900 | 0.0584 | 0.0981 |
| 0.0326 | 43.3739 | 18000 | 0.0581 | 0.0965 |
| 0.0282 | 43.6152 | 18100 | 0.0583 | 0.0967 |
| 0.0285 | 43.8565 | 18200 | 0.0579 | 0.0959 |
| 0.022 | 44.0965 | 18300 | 0.0654 | 0.0973 |
| 0.026 | 44.3378 | 18400 | 0.0640 | 0.0964 |
| 0.028 | 44.5790 | 18500 | 0.0627 | 0.0961 |
| 0.0288 | 44.8203 | 18600 | 0.0634 | 0.0962 |
| 0.025 | 45.0603 | 18700 | 0.0608 | 0.0961 |
| 0.0416 | 45.3016 | 18800 | 0.0610 | 0.0979 |
| 0.0311 | 45.5428 | 18900 | 0.0608 | 0.0968 |
| 0.0268 | 45.7841 | 19000 | 0.0575 | 0.0965 |
| 0.0249 | 46.0241 | 19100 | 0.0611 | 0.0960 |
| 0.0225 | 46.2654 | 19200 | 0.0594 | 0.0952 |
| 0.023 | 46.5066 | 19300 | 0.0595 | 0.0952 |
| 0.0291 | 46.7479 | 19400 | 0.0599 | 0.0955 |
| 0.0209 | 46.9891 | 19500 | 0.0620 | 0.0967 |
| 0.0234 | 47.2292 | 19600 | 0.0610 | 0.0956 |
| 0.0255 | 47.4704 | 19700 | 0.0611 | 0.0954 |
| 0.0289 | 47.7117 | 19800 | 0.0599 | 0.0956 |
| 0.0242 | 47.9530 | 19900 | 0.0619 | 0.0956 |
| 0.0195 | 48.1930 | 20000 | 0.0595 | 0.0951 |
| 0.0309 | 48.4343 | 20100 | 0.0600 | 0.0949 |
| 0.0233 | 48.6755 | 20200 | 0.0594 | 0.0952 |
| 0.0207 | 48.9168 | 20300 | 0.0589 | 0.0951 |
| 0.0212 | 49.1568 | 20400 | 0.0594 | 0.0952 |
| 0.0236 | 49.3981 | 20500 | 0.0598 | 0.0953 |
| 0.0271 | 49.6393 | 20600 | 0.0598 | 0.0953 |
| 0.0217 | 49.8806 | 20700 | 0.0599 | 0.0953 |
Framework versions
- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 3
Model tree for minhtien2405/vovinam-wav2vec2-base-vi
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h
Finetuned
minhtien2405/wav2vec2-base-vi