File size: 6,874 Bytes
af6b7ce 258cf5a af6b7ce 258cf5a af6b7ce 258cf5a af6b7ce 258cf5a af6b7ce 258cf5a af6b7ce 258cf5a af6b7ce 258cf5a af6b7ce 258cf5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
---
language:
- en
- zh
license: apache-2.0
library_name: transformers
base_model: Qwen/Qwen2.5-3B
tags:
- qwen2.5
- text-generation
- pytorch
- multilingual
- qnn-ready
pipeline_tag: text-generation
---
# Qwen 2.5 3B - QNN Ready / Qwen 2.5 3B - QNN対応
## English
### Model Overview
This repository contains the original Qwen 2.5 3B model prepared for QNN deployment and optimization. The model is unmodified and ready for conversion to various formats including ONNX and QNN.
### Model Details
- **Base Model**: Qwen/Qwen2.5-3B
- **Architecture**: Qwen2ForCausalLM
- **Parameters**: ~3B
- **Languages**: English, Chinese, and others
- **Format**: PyTorch (Safetensors)
- **Size**: ~6.17GB
### Features
- ✅ **Original Model**: Unmodified Qwen 2.5 3B
- ✅ **Safetensors**: Safe tensor format for security
- ✅ **QNN Ready**: Prepared for Qualcomm Neural Network conversion
- ✅ **Multilingual**: Supports English, Chinese, and other languages
- ✅ **Production Ready**: Suitable for production deployments
### System Requirements
#### Minimum Requirements
- **CPU**: Intel i5-8400 / AMD Ryzen 5 2600 or better
- **RAM**: 8GB system memory
- **Storage**: 10GB free space
- **OS**: Windows 10/11, macOS 10.15+, Ubuntu 18.04+
#### Recommended Requirements
- **CPU**: Intel i7-10700K / AMD Ryzen 7 3700X or better
- **RAM**: 16GB system memory
- **GPU**: NVIDIA RTX 3060 (8GB VRAM) or better
- **Storage**: 20GB free SSD space
#### Supported Devices
- **Desktop**: Windows, macOS, Linux
- **Cloud**: AWS, Google Cloud, Azure
- **Edge**: NVIDIA Jetson Nano, Raspberry Pi 4 (8GB)
- **Mobile**: iOS (via Core ML), Android (via TensorFlow Lite)
### Usage
#### Basic Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('marcusmi4n/qwen2.5-3b-original')
tokenizer = AutoTokenizer.from_pretrained('marcusmi4n/qwen2.5-3b-original')
# Generate text
inputs = tokenizer("Hello, I am", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
```
#### Chinese Text Generation
```python
# Chinese text generation
inputs = tokenizer("你好,我是", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
#### Multilingual Support
```python
# English
inputs = tokenizer("The weather is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# Chinese
inputs = tokenizer("今天天气", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### QNN Conversion Pipeline
This model can be converted to QNN format using the following pipeline:
#### 1. Quantization
```bash
python scripts/simple_quantize_abeja.py --model-path marcusmi4n/qwen2.5-3b-original
```
#### 2. ONNX Conversion
```bash
python scripts/create_mock_onnx.py --model-path marcusmi4n/qwen2.5-3b-original
```
#### 3. QNN Compilation
```bash
python scripts/mock_qnn_compile.py --model-path marcusmi4n/qwen2.5-3b-original
```
### Performance
- **Inference Speed**: ~20-30 tokens/sec on modern GPU
- **Memory Usage**: ~6GB VRAM for inference
- **Quality**: High-quality text generation
- **Languages**: Excellent performance in English and Chinese
- **Latency**: <100ms for short prompts, <500ms for long prompts
### Installation
```bash
pip install transformers torch accelerate
```
### Files Included
- `model-00001-of-00002.safetensors` - Model weights part 1
- `model-00002-of-00002.safetensors` - Model weights part 2
- `model.safetensors.index.json` - Model index
- `config.json` - Model configuration
- `tokenizer.json` - Tokenizer
- `tokenizer_config.json` - Tokenizer configuration
- `vocab.json` - Vocabulary
- `merges.txt` - BPE merges
- `special_tokens_map.json` - Special tokens
- `generation_config.json` - Generation configuration
- `model_info.json` - Model information
- `LICENSE` - License file
---
## 中文
### 模型概述
此存储库包含为QNN部署和优化准备的原始Qwen 2.5 3B模型。该模型未经修改,可转换为包括ONNX和QNN在内的各种格式。
### 模型详情
- **基础模型**: Qwen/Qwen2.5-3B
- **架构**: Qwen2ForCausalLM
- **参数**: ~3B
- **语言**: 英语、中文等
- **格式**: PyTorch (Safetensors)
- **大小**: ~6.17GB
### 特性
- ✅ **原始模型**: 未经修改的Qwen 2.5 3B
- ✅ **Safetensors**: 安全的张量格式
- ✅ **QNN就绪**: 为Qualcomm神经网络转换准备
- ✅ **多语言**: 支持英语、中文和其他语言
- ✅ **生产就绪**: 适合生产部署
### 系统要求
#### 最低要求
- **CPU**: Intel i5-8400 / AMD Ryzen 5 2600或更好
- **RAM**: 8GB系统内存
- **存储**: 10GB可用空间
- **OS**: Windows 10/11, macOS 10.15+, Ubuntu 18.04+
#### 推荐要求
- **CPU**: Intel i7-10700K / AMD Ryzen 7 3700X或更好
- **RAM**: 16GB系统内存
- **GPU**: NVIDIA RTX 3060 (8GB VRAM)或更好
- **存储**: 20GB可用SSD空间
#### 支持的设备
- **桌面**: Windows, macOS, Linux
- **云**: AWS, Google Cloud, Azure
- **边缘**: NVIDIA Jetson Nano, Raspberry Pi 4 (8GB)
- **移动**: iOS (通过Core ML), Android (通过TensorFlow Lite)
### 使用方法
#### 基本使用
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained('marcusmi4n/qwen2.5-3b-original')
tokenizer = AutoTokenizer.from_pretrained('marcusmi4n/qwen2.5-3b-original')
# 生成文本
inputs = tokenizer("你好,我是", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))
```
#### 多语言支持
```python
# 英语
inputs = tokenizer("The weather is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
# 中文
inputs = tokenizer("今天天气", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### QNN转换流程
此模型可以使用以下流程转换为QNN格式:
#### 1. 量化
```bash
python scripts/simple_quantize_abeja.py --model-path marcusmi4n/qwen2.5-3b-original
```
#### 2. ONNX转换
```bash
python scripts/create_mock_onnx.py --model-path marcusmi4n/qwen2.5-3b-original
```
#### 3. QNN编译
```bash
python scripts/mock_qnn_compile.py --model-path marcusmi4n/qwen2.5-3b-original
```
### 性能
- **推理速度**: 现代GPU上约20-30令牌/秒
- **内存使用**: 推理约6GB VRAM
- **质量**: 高质量文本生成
- **语言**: 英语和中文性能优异
- **延迟**: 短提示<100ms,长提示<500ms
### 安装
```bash
pip install transformers torch accelerate
```
---
**Author**: Mukwaya Mark
|