Qwen 2.5 3B - QNN Ready / Qwen 2.5 3B - QNN対応

English

Model Overview

This repository contains the original Qwen 2.5 3B model prepared for QNN deployment and optimization. The model is unmodified and ready for conversion to various formats including ONNX and QNN.

Model Details

  • Base Model: Qwen/Qwen2.5-3B
  • Architecture: Qwen2ForCausalLM
  • Parameters: ~3B
  • Languages: English, Chinese, and others
  • Format: PyTorch (Safetensors)
  • Size: ~6.17GB

Features

  • Original Model: Unmodified Qwen 2.5 3B
  • Safetensors: Safe tensor format for security
  • QNN Ready: Prepared for Qualcomm Neural Network conversion
  • Multilingual: Supports English, Chinese, and other languages
  • Production Ready: Suitable for production deployments

System Requirements

Minimum Requirements

  • CPU: Intel i5-8400 / AMD Ryzen 5 2600 or better
  • RAM: 8GB system memory
  • Storage: 10GB free space
  • OS: Windows 10/11, macOS 10.15+, Ubuntu 18.04+

Recommended Requirements

  • CPU: Intel i7-10700K / AMD Ryzen 7 3700X or better
  • RAM: 16GB system memory
  • GPU: NVIDIA RTX 3060 (8GB VRAM) or better
  • Storage: 20GB free SSD space

Supported Devices

  • Desktop: Windows, macOS, Linux
  • Cloud: AWS, Google Cloud, Azure
  • Edge: NVIDIA Jetson Nano, Raspberry Pi 4 (8GB)
  • Mobile: iOS (via Core ML), Android (via TensorFlow Lite)

Usage

Basic Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained('marcusmi4n/qwen2.5-3b-original')
tokenizer = AutoTokenizer.from_pretrained('marcusmi4n/qwen2.5-3b-original')

# Generate text
inputs = tokenizer("Hello, I am", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))

Chinese Text Generation

# Chinese text generation
inputs = tokenizer("你好,我是", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Multilingual Support

# English
inputs = tokenizer("The weather is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

# Chinese
inputs = tokenizer("今天天气", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

QNN Conversion Pipeline

This model can be converted to QNN format using the following pipeline:

1. Quantization

python scripts/simple_quantize_abeja.py --model-path marcusmi4n/qwen2.5-3b-original

2. ONNX Conversion

python scripts/create_mock_onnx.py --model-path marcusmi4n/qwen2.5-3b-original

3. QNN Compilation

python scripts/mock_qnn_compile.py --model-path marcusmi4n/qwen2.5-3b-original

Performance

  • Inference Speed: ~20-30 tokens/sec on modern GPU
  • Memory Usage: ~6GB VRAM for inference
  • Quality: High-quality text generation
  • Languages: Excellent performance in English and Chinese
  • Latency: <100ms for short prompts, <500ms for long prompts

Installation

pip install transformers torch accelerate

Files Included

  • model-00001-of-00002.safetensors - Model weights part 1
  • model-00002-of-00002.safetensors - Model weights part 2
  • model.safetensors.index.json - Model index
  • config.json - Model configuration
  • tokenizer.json - Tokenizer
  • tokenizer_config.json - Tokenizer configuration
  • vocab.json - Vocabulary
  • merges.txt - BPE merges
  • special_tokens_map.json - Special tokens
  • generation_config.json - Generation configuration
  • model_info.json - Model information
  • LICENSE - License file

中文

模型概述

此存储库包含为QNN部署和优化准备的原始Qwen 2.5 3B模型。该模型未经修改,可转换为包括ONNX和QNN在内的各种格式。

模型详情

  • 基础模型: Qwen/Qwen2.5-3B
  • 架构: Qwen2ForCausalLM
  • 参数: ~3B
  • 语言: 英语、中文等
  • 格式: PyTorch (Safetensors)
  • 大小: ~6.17GB

特性

  • 原始模型: 未经修改的Qwen 2.5 3B
  • Safetensors: 安全的张量格式
  • QNN就绪: 为Qualcomm神经网络转换准备
  • 多语言: 支持英语、中文和其他语言
  • 生产就绪: 适合生产部署

系统要求

最低要求

  • CPU: Intel i5-8400 / AMD Ryzen 5 2600或更好
  • RAM: 8GB系统内存
  • 存储: 10GB可用空间
  • OS: Windows 10/11, macOS 10.15+, Ubuntu 18.04+

推荐要求

  • CPU: Intel i7-10700K / AMD Ryzen 7 3700X或更好
  • RAM: 16GB系统内存
  • GPU: NVIDIA RTX 3060 (8GB VRAM)或更好
  • 存储: 20GB可用SSD空间

支持的设备

  • 桌面: Windows, macOS, Linux
  • : AWS, Google Cloud, Azure
  • 边缘: NVIDIA Jetson Nano, Raspberry Pi 4 (8GB)
  • 移动: iOS (通过Core ML), Android (通过TensorFlow Lite)

使用方法

基本使用

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained('marcusmi4n/qwen2.5-3b-original')
tokenizer = AutoTokenizer.from_pretrained('marcusmi4n/qwen2.5-3b-original')

# 生成文本
inputs = tokenizer("你好,我是", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0]))

多语言支持

# 英语
inputs = tokenizer("The weather is", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

# 中文
inputs = tokenizer("今天天气", return_tensors="pt")
outputs = model.generate(**inputs, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

QNN转换流程

此模型可以使用以下流程转换为QNN格式:

1. 量化

python scripts/simple_quantize_abeja.py --model-path marcusmi4n/qwen2.5-3b-original

2. ONNX转换

python scripts/create_mock_onnx.py --model-path marcusmi4n/qwen2.5-3b-original

3. QNN编译

python scripts/mock_qnn_compile.py --model-path marcusmi4n/qwen2.5-3b-original

性能

  • 推理速度: 现代GPU上约20-30令牌/秒
  • 内存使用: 推理约6GB VRAM
  • 质量: 高质量文本生成
  • 语言: 英语和中文性能优异
  • 延迟: 短提示<100ms,长提示<500ms

安装

pip install transformers torch accelerate

Author: Mukwaya Mark

Downloads last month
4
Safetensors
Model size
3B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for marcusmi4n/qwen2.5-3b-original

Base model

Qwen/Qwen2.5-3B
Finetuned
(258)
this model